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Abstract -- The biconjugate gradient (BCG) method is tile "natural" gener-

alization of tim classical conjugate gradient algorithm for IIermitian positive deft-

alto matrices to general non-Ilermltian linear systems. Unfortunately, the original

BCG algorithm is susceptible to possible breakdowns and numerical instabilitios.

Recently, Freund and Nachtigal have proposed a novel BCG-type approach, the

quasi-minimal residual method (QMR), which overcomes the problems of BCG.

IIere, we present an implementation of QMI-t based on an s-step version of the non-

symmetric look-ahead Lanczos algorithm. The main feature of the s-step Lanczos

algorithm is that, in general, all inner products, except for one, can be computed

in parallel at the end of each block; this is unlike the standard Lanczos process

where inner products are generated sequentially. The resulting implementation of

QMI-t is particularly attractive on massively parallel SIMD architectures, such as

the Connection Machine.

"Tiff,* work w,_ supported in part by DAI1PA via Cooperative Agreement NCC 2-387 between
NASA and the Universities Space ltesearch Association (USRA).





INTRODUCTION

Weareconcernedwith the iterativesolutionof largesparselinearsystems

Ax = b, (l)

where A is a nonsingular, in general non-IIermitian N x N matrix. Some of the most

eflieient iterative schemes for (1) are Krylov subspace methods: for any initial guess

Xo E C N, they generate approximations to A-lb of tile form

xnexo+Kn(ro, A), n= 1,2,..., (2)

where ro = b- Axo and

Kn(ro, A) = span {re, Are,..., A'_-lro} (3)

is the nth Krylov subspace generated by r0 and A. For example, tile generalized mini-

mal residual algoritlnn (GMRES) of Saad and Schultz [8] and tlle biconjugate gradient

algorithm (BCG) of Lanczos [6] both satisfy (2). Unfortunately, for methods like GM-

RES, work and storage requirements per iteration grow linearly with n and, therefore,

versions with restarts are used in practice, which often results in slow convergence.

In contrast, for BCG, work and storage requirements per iteration are constant and

low. IIowever, BCG typically exhibits a rather irregular convergence behavior and the

method can even break down.

TIlE QMR APPROACH

In [3], Freund and Nachtigal have proposed a BCG-type approach, the quasi-

minimal residual algorithm (QMR), which overcomes the problems of BCG. The

method uses an implementation developed by Freund, Gutknecht, and Nachtigal [1, 2]

of the nonsymmetric Lanczos algorithm [5] with look-ahead [7] to generate basis vectors

vl, v2,.., for the Krylov subspaces (3). More precisely, with

v(-) = [,,, v2 ... v.] = [_qv2 ... v_],
vk = [v,_ v,_+, ... v,_+,_x], k = 1,...,1 = t(,_),

(,I)

We ]laVe

h',,(ro, A) = {V(")z I z E C '_}- for n = 1,2, .... (,5)

The blocks Vk in (,1) just contain the vectors corresponding to the kth look-ahead

Lanczos step of length

h k = Ilk+ 1 -- rtk.

In the sequel, we refer to the first vectors Vn k in each block as regular vectors, while

the remaining vectors are called inner vectors. Furthermore, the relation

AV('O = V("+1)H ('_) (6)

hohls, llere H(") is an (n + 1) x n upper llessenberg matrix which is also block tridi-

agonal with l diagonal blocks of size h k X hi,, k = 1,2,...,1. In addition to the right
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Lanczos vectors vl,v2,..., tile look-ahead Lanczos algorithm generates left Lanczos

vectors Wl,W2,... such that

Kn(wl,AT)=span{wl,w2,...,wn} for n= 1,2,... ,

and, as in (4), we set

lI_ = [wnk w,,,+l ... w,k+,-1], k = 1,...,I.

These vectors are just constructed such that right and left Lanczos vectors correspond-

ing to different look-ahead steps are biorthogonal, i.e.,

IvTvk = / 0 ifj#k,
Dk if j= k, j,k= 1,...,l, (7)

k

and, moreover, tile matrices Dk are all nonsingnlar.

By means of (5) and (6), the nth iterate (2) of any Krylov subspace method and

the corresponding residual vector can be written as follows:

z,_ = zo+V('Oz,_ for some z,_ E C '_, (8)

rn = b- Ax,_ = V (n+l) (llroll2ex - lt(")z,) . (9)
k'" "" /

Ilere el denotes the first unit vector in IU _+1.

For the QMR method the parameter vector z,_ in (8) is chosen such that the Eu-

clidean norm of the coefficient vector in the representation (9) is minimal, i.e., as

solution of the least squares problem

zEl: '_

where a,_ - diag (11_,11_,Ilv211=,...,Ilv,_+l[12). IIere, fL_ is chosen such that all basis vec-

tors ,,J/ll jll , J = 1,...,, + 1, i, the representation (9) of r, have tile same Euclidean

length. Note that _,II ("l is an upper IIessenberg matrix with full column rank n.

IIence (10) always has a unique solution zn and the QMR iterate z,, is well defined by

(8) and (10). Finally, we remark that z, can be easily updated from step to step, and

the resulting QMR algorithm can be implemented using only short recurrences (see [3]

for details).

AN 8--STEP LANCZOS ALGORrrlIM WITII LOOK-AIIEAI)

To enforce the biorthogonality conditions (7), inner products of vectors of length

N need to be computed. In the implementation of the look-ahead Lanczos algorithm

described in [1, 2], this is done sequentMly, i.e. inner products are calc,lated in each

iteration step n. On a massively parallel machine, such as the Connection Machine,

the sequential computation of these inner products represents a bottleneck.

In this section, we sketch a version of the look-ahead l,anczos algorithm which

overcomes this problem and is more suited for a parallel machine. In contrast to the

sequential algorithm, where look-ahead steps of size hk > 1 are performed only if neces-

sary to avoid breakdowns of the Lanczos process, the philosophy of the s-step Lanczos





algorithmis to constructLanczosblocksof givensizehk = s, whenever possible. This is

done by first generating s- 1 intermediate inner vectors by means of simple three-term

recurrences

_,,+l = Ab,_ - (,_G, - r/,_fin-1, (11)

tOn+l = ATwn -- (_n_bn-- r/,obn-1 ; (12)

with suitably chosen coefl]cients (,'n,71,_, and r/_k = 0. Tile biorthogonality conditions

(7) are then enforced only at the end of each block. This has the advantage that all

inner products arising in the biorthogonalization process for the inner vectors of a whole

block can be computed in parallel. We remark that to enforce (7) for the inner vectors

in block l, it is sufficient to biorthogonalize them only against the vectors from the

previous blocks f = f(n),f + 1,...,l using

v, = _,,- V tD-/'IVf_,, -...- VI_,D_),IvT,_,_ (13)

w. = (v, - IVIDTTVf ff,r_-...- IVI_tDT_Tvf l,_,. (1,1)

Moreover, in general, only one previous block occurs in (13) and (14), i.e., f = 1 - 1.

In [4], Kim and Chronopoulos proposed an s-step Lanczos algorithm using a lixed

block size s throughout the whole process. Our numerical tests show that such an

approach is not viable. In order to obtain a robust implementation of the s-step

Lanczos algorithm, it is crucial to keep the block size variable and combine the process

with a suitable look-ahead strategy.

In the following algorithm, we outline the s-step look-ahead Lanczos method which

we propose. In each block step, the algorithm tries to build a block of size s. If the

construction of such a block would lead to a singular or a nearly singular matrix Dt in

(7) or to a new pair v,_+_ and w,_+_ of regular vectors which have dominant components
in the old Krylov subspaces h',,t(vl, A) or h',,_(wl,/IT), we either build a smaller block

or, by performing sequential steps, a bigger block.

Algorithm. Sketch of s- step

0) &t = ,'o/llr.ll d, oos 
Setnt = 1, l= 1, v0 = _bo=

For l = 1,2,...:

1)

Lanczos algorithm with look-ahead

W 1 _ C N with 11,,,,112-- l,

0;

Compute s - 1 inlermcdiate inner vcctors via (ll) and (I2) for n = nl,...,_Tt +

s - 2;

&t = [G "'" fi' = [G, ... G,+,-,];

2) Construct the symntclric matrix 1"I'17"(};

3) (Biorthogonalizotion of inner vectors.)

Determine f by n/ = max{ni l nj <nt-s+l};

For n = nt + l,...,nt + s - 1, compute v,, and w, via (13) and (I4};

If 11,,,112= o o,. I1,,'.11 = o, stoz,;
Set I'} = Iv,,, ... v,,+,-t], It] = [w,, ... w,,+,-1];

4) Construct the symmetric matrix Dt = IvtTvt;





5) Decide whether to construct v,_,+, and w,,_+s as re9ular vectors or to reduce the

block size and go to 8) or 6), respectively;

6) If it is possible to construct regular vectors v,,_+_ and w,_+__ for s_< s:

set nt+l = nt +s__, _ = [vnt ... vm+s__l] , Wt = [wn, ... w,_+__-1], and go to 8);
Otherwise, try to increase the block size s by sequential steps:

set _ = s;

Loop:

Set 5 = _ + 1, n = n1+ 5- 2, compute vn+l and VOn+l via (11) and (12), and

biorthogonalize immediately:

determine f by n/ = max{hi I nj < nt-g+ 1} and compute v,_+l and wn+l vsin9

formulas (13.) and (14.) (with n replaced by n+ 1}; If IIv,+x 112= 0 or IIw,+_ 112= 0,
stop;

Set V_ = [V_v,,+l], IVi = [IVt w,+l] and update the matrir wTvt;

This loop is terminated if we can construct regular vectors vm+_ and wnt+J or if
we have reached the mazimum block size. In the first case, go to 8), in the second

case, go to 7);

7) Determine the smallest value which failed the checks and update the upper bound

n( A ) to this value. The block is now enforced to close. Let its size be _ and set

n_+_= nt + ._,vi = [v_, ... v.,+___]lVl = [w., ... w.,+__,];

8} (Construct regular vectors Vn_+_ and wnt+_.}
Set n = n/+t, _n = a_)n-l, _-Ort = ATlbn-l, and compute

lb n = I_ n -- ] Vl_ l l) lS ViTl l_n -- W, DF T vtT ,r_.;

If 110.112= 0 or I1'_.11_= 0, stop;
Otherwise, set vn = _./11_.112and w=-- '_-/11'_112;

9) Construct the Ith blocks of the block tridiagonal matrix H (n-l) and set l = l + 1.

We note that the quantity n(A) in step 7) is an estimate of the norm of the matrix

A which is used for our checks to guarantee that the Lanczos vectors remain sufliciently

linearly independent. A similar concept was first introduced for the sequential look-

ahead Lanczos algorithm in [1]. These checks, the criteria for the decision in step 5), and

further details of the algorithm will be presented in a forthcoming paper, llere, we only

remark that the important properties (5), (6), and (7), which were used in the derivation

of the QMR method, remain valid also for the s-step Lanczos algorithm with look-

ahead. Also, we note that the above algorithm can be realized with the same number of

inner products as in the classical nonsymmetric Lanczos method without look-ahead.

In particular, the s x s matrix l_:tTf_ in step 2) can be constructed by computing only

2s - 1 inner products, rather than s 2 as the straightforward approach would suggest.

Moreover, in step 4), the matrix Dt can be updated from li"tTI-/], using only already

available inner products. Finally, numerical experiments with an implementation of

the resulting QMR algorithm on the CM-2 will be reported elsewhere.
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Abstract. We consider Krylov subspace methods for the solution of large sparse linear

systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise

in important applications, such as inverse scattering, numerical solution of time-dependent

SchrSdinger equations, underwater acoustics, eddy current computations, numerical corn-

putations in quantum chromodynamics, and numerical conformal mapping. Typically the

resulting coefficient matrices A exhibit special structures, such as complex symmetry, or

they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace

approach with iterates defined by a quasi-minimal residual property, the QMR method,

for solving general complex non-Hermitian linear systems. Then, we study special Krylov

subspace methods designed for the two families of complex symmetric respectively shifted

Hermitian linear systems. We also include some results concerning the obvious approach

to general complex linear systems by solving equivalent real linear systems for the real and

imaginary parts of x. Finally, numerical experiments for linear systems arising from the

complex Helmholtz equation are reported.
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1. Introduction

In this chapter, we make someintroductory remarks about Krylov subspaceme_hodsand
list applications where complex linear systems arise. Furthermore, we give an outline of

the thesis and introduce some notation.

1.1. Krylov subspace methods

One of the most frequently encountered tasks in numerical computations is the solution of

nonsingular systems of linear equations

Ax = b. (i.i)

Often, as for linear systems resulting from finite difference or finite element approximations

to partial differential equations (PDE's), the coefficient matrix A of (1.I) is very large,

but sparse. A natural way to exploit the sparsity of ,4 in the solution process of (1.1)

is to use iterative techniques which involve the coefficient matrix A only in the form of

matrix-vector products. Most iterative schemes of this type fall into the category of KryIov

subspace methods: they produce approximations x,_, n = 1,_,o..., to A-lb of the form

xn E Xo + Kn(ro,A). (i.2)

Here z0 is any initial guess for (1.1), ro = b - Axo the corresponding residual vector, and

I(n(ro, .4) = span{ro, Aro, ..... 4 _-1 ro }

is the rTth Krylov subspace generated by r0 and A. Two classical examples of I{rytov

subspace methods are the conjugate algorithm (CG hereafter) due to Hestenes and Stiefel

[HS] and Chebyshev iteration [GV], which are both methods for the solution of linear

systems (1.1) with Hermitian positive definite coefficient matrices .4. Especially CG is one

of the most powerful techniques for solving Hermitian positive definite linear systems. Its

success has prompted extensive research into generalizations of the method to indefinite

and non-Hermitian matrices and a number of CG-like Krylov subspace methods have been

proposed (see, e.g., [Sto, SS1, Saa2] for surveys). Besides CG-like schemes, the second

important subclass of Krylov subspace methods are semi-iterative algorithms modeled

after Chebyshev iteration. Eiermann, Niethammer, and Varga [ENV] have established a

theory for methods of this type for non-Hermitian linear systems.

In this thesis, we are mainly concerned with CG-like Krylov subspace methods.



1.2. Ideal Krylov subspace methods for non-Hermitian matrices

Classical CG has two outstanding features. First, its iterates (1.2) are characterized by a

minimization property. Secondly, x,, can be generated cheaply, by means of simple three-

term recurrences. For general non-Hermitian matrices, the situation is less satisfactory.

An ideal CG-like Krylov subspace method for solving non-Hermitian linear systems (1.1)

would have features similar to the classical CG algorithm. It would produce iterates xn in

(1.2) which:

(i) are characterized by a minimization property over Kn(ro. A), such as the minimal

residual property

lib- Ax.II = min lib--4xll, z,, E zo + K.(ro,A);
zExo+ l_'n (to,A)

(1.3)

(ii) can be computed with little work and low storage requirements per iteration.

Unfortunately, it turns out that. for general non-Hermitian matrices, one cannot fulfill (i)

and (ii) simultaneously. This result is due to Faber and Manteuffel [FM1, FM2] who have

shown that CG-type algorithms with (i) and (ii) exist essentially only for matrices of the

special form

A = ei°(T + iaI) where T = T hr is Hermitian, a, 0 E 19, (1.4)

(see also Voevodin [Voe] and Joubert and Young [JY]). Instead, most CG-type methods

for non-Hermitian linear systems satisfy either (i) or (ii).

In the first category, the most successful scheme is the generalized minimal residual

algorithm (GMRES hereafter) due to Saad and Schultz [SS2]. It produces the iterates

defined by (1.3) and thus fulfills (i). However. it violates (ii), since work and storage per

iteration grow linearly with the iteration number. Consequently, in practice, one cannot

afford to run the full algorithm and it is necessary to use restarts. For difficult problems.

this often results in very slow convergence.

In the second category, the archetype is the biconjugate gradient algorithm (BCG

hereafter) which goes back to Lanczos [Lan2] and, later on. ,,-as revived by Fletcher [Fle].

BCG is based on simple three-term recurrences, which keep work and storage requirements

constant at each iteration. However, the BCG iterates are defined by a Galerkin condition

rather than a minimization property (i), which means that the algorithm can exhibit --

and typically does -- a rather irregular convergence behavior with wild oscillations in

the residual norm. Furthermore, in the BCG algorithm, breakdowns -- more precisely,

division by 0 -- may occur. In finite precision arithmetic, such exact breakdowns are

very unlikely; however, near-breakdowns may occur, leading to numerical instabilities in

subsequent iterations. Recently, two modifications of BCG, namely CGS [Son] and Bi-

CGSTAB [Van], have been proposed. However, while these methods seem to work well in



many cases,they do not addressthe problem of breakdowns,and thus they too, like BCG.
are susceptible to instabilities. In exact arithmetic, both CGS and Bi-CGSTAB break
down every time BCG does.

1.3. Complex linear systems

While most linear systems which arise in practice have real coefficient matrices .4 and real

right-hand sides b, there are some important applications which lead to complex linear

systems. PDE's which model dissipative processes (see, e.g., [Pie, Chapter 10], [Mar])

usually involve complex coefficient functions and/or complex boundary conditions [BGuT,

KG], and discretizing them yields linear systems with complex matrices A. A typical

example for this category is the complex Helmholtz equation

-Au - o.lu + io'2u -- f, (1.5)

where o'1, o'2 are real coefficient functions, which describes the propagation of damped

time-harmonic waves as, e.g., electromagnetic waves in conducting media [EH, Chapter 8J.

Equations of type (1.5) also arise in situations where damping is usually negligible, as in

long-range wave propagation problems in underwater acoustics [BGoT, Gol, SLJ], where,

by means of parabolic approximation techniques [Tap] and discretization in range direction.

the computation of three-dimensional wave propagation is reduced to the solution of a

two-dimensional complex Helmholtz equation at each range step. Further applications,

which give rise to complex linear systems, include discretizations of the time-dependent

SchrSdinger equation
Ou

i 0--7= + (1.6)

using implicit difference schemes [DFP], electromagnetic inverse scattering problems [P._I.

SPM], eddy current computations [BHST], numerical computations in quantum chromo-

dynamics [BBGRM], and numerical conformal mapping [Tru].

In all these examples, the resulting coefficient matrices A are non-Hermitian. How-

ever, they still exhibit special structures. Often, as for the linear systems resulting from

(1.6), .4 is a shifted Hermitian matrix, i.e., a matrix of the form (1.4). In most other

cases, which lead to complex systems, as for the linear systems resulting from the complex

Helmholtz equation (1.5) with first-order boundary conditions, the coefficient matrix is

complex symmetrie:

A=A T. (1.7)

Note that the two families (1.4) and (1.7) overlap. The matrix (1.4) is complex symmetric

if, and only if, T is real.

Surprisingly, when the resulting linear systems (1.1) are solved in practice, usually

no attempt is made to exploit the special structures (1.4) or (1.7). Indeed, there are two



popular approaches.The first one (see,e.g., [BGJ) is to apply preconditioned CG to the

Hermitian positive definite no,."mal equations

AH Az = AHb. (1.8)

Of course, complex numbers can always be avoided by rewriting (1.1) as a real linear

system for the real and imaginary parts of x. The second popular approach is to solve

this real and, in general, nonsymmetric linear system by one of the CG-like mothods, for

example GMRES. It turns out that in both cases the resulting iterative sche1,,cs tend to

converge slowly. As a consequence, complex linear systems have the bad reputation of

being difficult to solve by CG-type methods.

Finally, we mention two applications for which shifted linear systems

Ax=b, .4=M+aI,

where ._I and b are real and fixed, o'EC,
(1.9)

need to be solved repeatedly for different shifts a. This situation arises when real parabolic

equations are solved using high-order implicit methods (see, e.g., [GS1, GS2]). Further-

more, linear systems (1.9) also come up in the context of frequency response computation

in control theory [Lau].

1.4. Overview of the theMs

The purpose of this thesis is twofold. First, we present a novel BCG-like approach for

general nonsingular non-Hermitian linear systems (1.1), the quasi-minimal residual algo-

rithm (QMR hereafter), which overcomes the problems of BCG. The QMR method was

first proposed by Freund [Fre4! for the special case of complex symmetric linear systems

and recently extended to general non-Hermitian matrices by Freund and Nachtigal [FN1.

FN2]. The QMR approach uses a look-ahead variant of the nonsymmetric Lanczos process

to generate basis vectors for _he Krylov subspaces K,,(ro,.4). The look-ahead Lanczos

approach was first proposed by Taylor [Tay] and Parlett, Taylor, and Liu IPTL t. For the

QMR method, we use the implementation of the look-ahead Lanczos process which was

recently developed by Freund. Gutknecht, and Nachtigal [FGN, FNll. Using the Lanc-

zos basis, the actual QMR iterates are then defined by a relaxed version of (1.3), namely

a quasi-minimal residual property. The QMR approach can be implemented using only

short recurrences and hence it still satisfies the requirement (ii) for an ideal Krylov subspace

method. The quasi-minimal residual property ensures that QMR, unlike BCG, converges

smoothly; moreover, existing BCG iterates can also be easily and stably recovered from

the QMR process. Finally, for the QMR method, it is possible to obtain error bounds

which are essentially the same as the standard bounds for GMRES. To the best of our

knowledge, this is the first convergence result for a BCG-like algorithm.
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Second, we present CG-type methods which exploit the special structures (1.4) re-

spectively (1.7). In particular, we show that, for complex symmetric matrices, work and

storage for the QMR approach can be halved. For shifted Hermitian matrices (1.4). we

propose and analyze three different CG-type methods based on the minimal residual prop-

erty (1.3), a Galerkin condition, and an Euclidean error minimization property. For the

practical use of CG-type methods it is crucial that they can be combined with efficient

preconditioners. Unfortunately, the more classical techniques, such as incomplete factor-

ization, lead to preconditioned matrices which in general are no longer in the class (1.4).

We show that this problem can be resolved and the special structure of the matrices (1.4)

preserved by using polynomial preconditioning, and results on the optimal choice of the

preconditioner are given. Note that polynomial preconditioning is an attractive approach

for vector and parallel computers and, because of that, has become very popular in recent

years (see [Saa2] for a survey).

Finally, we also present some results which indicate that for Krylov subspace methods

it is always preferable to solve the original complex linear system rather than equivalent

real ones.

The outline of this thesis is then as follows. In Section 2, we are concerned with

the nonsymmetric Lanczos process. In particular, we sketch the implementation of the

look-ahead Lanczos algorithm proposed in [FGN, FN1]. In Section 3, we present the QM1R

method for general nonsingular non-Hermitian matrices. In Section 4, we consider CG-

type algorithms for complex symmetric matrices. In Section 5, we study CG-llke methods

for shifted Hermitian matrices. In Section 6, we are concerned with the issue "complex

versus equivalent real linear systems". In Section 7, we present some numerical examples

for complex symmetric and shifted Hermitian linear systems. Finally, in Section S. we

make some concluding remarks.
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1.5. Notation

Throughout this thesis, all vectors and matrices are assumed to be complex in general..-ks

usual, i = v/L"i ". For any matrix .'ff = [mj_ ], we use the following notation:

=._--7//=[m-_jk] = the complex conjugate of ,h/,

M r = [rnkj] = the transpose of M,

,h./-H ._ ,_._T the Hermitian of M,

Re ._/= (_'ff + _)/2 = the real part of M,

Im M = (M - .!,-:'[)/(2i) = the imaginary part of .h/,

amax(3/) = the largest singular value of M,

amin(M') = the smallest singular value of M,

IIMll = Gmax(=_.f) = the 2-norm of M.

For any vector c • C m and any matrix B • C re×m, we use the following notations:

llcll= _ Euclidean norm of c,

IIclIB= _ = B-norm of c, if B is Hermitian positive definite,

A(B) = the set of eigenvalues of B.

Am_x(B) = the largest eigenvalue of B, if B is Hermitian,

Ami.(B) = the smallest eigenvalue of B, if B is Hermitian,

K,(c, B) = span{c, Bc,...,B"-ic}

= the nth Krylov subspaceof C m generated by c and B.

Furthermore, we denote by

e(_)
J =[0-.. 0 1 0 ... 0]r e R"

T
J

the jth unit vector of length n and by L, the n x n identity matrix. If the dimension n is

evident from the context, we will simply write ej and I. We denote by

_. = (¢(`k)--_0 +a,`k +... + a,`k" I a0,a,,...,a, • C}

and II (r) = {¢(,k) _= a0 + a,`k + .-. + an,k" I o'0,a,,...,an • R}

the set of complex and real polynomials of degree at most n, respectively. Frequently, we

will make use of the relation

K,,(c,B) = {¢(B)c [(I, • l'I,_,}, n = 1,2, .... (1.10)



Throughout this thesis, .V denotes the dimension of the coefficient matrix .4 of (1.1)

and .4. E C N×N is in general non-Hermitian. Moreover, we use the following notation:

z0 = initial guess for (1.1),

z, = nth iterate,

r, = b - Az, = nth residual vector,

t_rt = nth right Lanczos vector,

w, = nth left Lanczos vector.

If it is not evident from the context which iterative method we are considering, quantities

of different algorithms will be distinguished by superscripts, e.g., z_ MR and z, Bc_.

Finally, one more note. In our formulations of the nonsymmetric Lanczos algorithm

and of BCG, we use A T rather than An. This was a deliberate choice in order to avoid

complex conjugation of the scalars in the recurrences; the algorithms can be formulated

equally well in either terms.



2. An implementation of the look-ahead Lanczos process for non-Hermitian
matrices

In this chapter, vcefirst recall the classical nonsymmetric Lanczos method and its close
relationship with formally orihogonal polynomials (FOP's hereafter). Next, we describe

the basic idea of look-ahead Lanczos procedures, and finally, we present an actual imple-

mentation of a Lanczos algorithm with look-ahead.

2.1. The classical nonsymmetric Lanczos algorithm

In 1950, Lanczos [Lanl] proposed the following algorithm for successive reduction of a

general matrix A E C N×N to tridiagonal form.

Algorithm 2.1. (Classical Lanczos method.)

O) Choose r0, so E C N with r0, so # 0;

Set t';1 = r0, u3] = So, v0 = wo = O;

Forn = 1,2,

-T_ .1) Compute 77= w n t,_,

I£_7 = O: set I5 = n - 1, and stop;

2) Otherwise, choose _,, 7, E C with 3,7,_ = 77;

Set v. = 7Jn/Tn and w. = tvn/3n"

3) Compute or. = wr Avn;

Set Un+l --'_ Avn - OtnVn --3nUn--l;

Set l_;n-t- 1 = ATwn -- O_nR" n -- _/nU)n_l .

We refer to [Wil, pp. 388-39-i] for a detailed discussion of the Lanczos algorithm: in

particular, proofs of the properties collected in Proposition 2.2 below can be found there.

In the sequel, the notations

and H. =

will be used. Moreover, let

L,. = dimKN(ro,A) and Lt = dim KN(SO, A T) (2.3)
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denotethe grade of r0 with respect to .4. and the grade of s0 with respect to .4 T. respectively,

(cf [wia,p. 3r]) and set

L. = min{Lr. Lt}. (2.4)

We remark that Lr >_ 1 (Lt >_ 1) is just the smallest integer such that the subspace

IQ, (to, A) (I(L, (So, .4r)) is A-invariant (AT-invariant).

Proposition 2.2.

a) In exact arithmetic, AIgorithm 2. I stops after a t_nite number of steps n = L + 1 and

O< L <_L,.

b) Fork, n = 1,2,...,L:

(2.5)
1, ilk = n.(

c) Forn= 1,2,...,£-

I(n(ro,A) = span{vl, v2,..., Vn},

gn(so, A T ) = span{wl, w2,... , wn },
(2.6)

AE,=_;_H,+[0 0 .-. 0 _,+1],
(2.7)

ATw.=W.H T+[O 0 ... 0 t_n+l].

Note that the termination index L of Algorithm 2.1 is the smallest integer such that

t_'_'+l_L+_ = 0. (2.8)

There are two essentially different cases for fulfilling the termination condition (2.8). The

first case, referred to as regular termination, occurs when i_L+ 1 = 0 or ff'L+l = 0. If

tSL+ 1 -'- 0, then L = L_ and the right Lanczos vectors vl,.,.,VL, span the A-invariant

subspace KL,(ro,.4). Similarly, if if't+1 = 0, then L = Ll and the left Lanczos vectors

wl,..., WL, span the Ar-invariant subspace IQ, (so, AT). Unfortunately, it can also happen

that the termination condition (2.8) is satisfied with t'_L+1 # 0 and t_L+ 2 # 0. This second

case is referred to as serious breakdown [Wil, p. 389]. Note that, in this case, L < L, and

the Lanczos vectors span neither an A-invariant nor an AT-invariant subspace of C x.

It is the possibility of serious breakdowns, or, in finite precision arithmetic, of near-

breakdowna, i.e.,

_r,_. _ o, but ,_. ¢ o and ,3.¢ o, (2.o)

that has brought the classical nonsymmetric Lanczos algorithm into discredit. However,

by means of a look-ahead procedure, it is possible to leap (except in the very special case of

an incurable breakdown [Tay]) over those iterations in which the standard algorithm would
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break down. In the next section, using the intimate connection between the Lanczos
processand FOP's, we describe the basic idea of the Lanczosmethod with look-ahead.

2.2. Orthogonal polynomials

Onereadily verifies that the Lanczos vectorsgeneratedby Algorithm 2.1 are of the form

1 1
v,- ¢I',-l(A)r0 and w,= @,_l(,4T)so, (2.10)

where 'I',,-1 E 1I,_1 is a uniquely defined monic polynomial• Then. introducing the formal

inner product

(¢b, ¢):= (@(At)s0)T (O(A)r0)= s0r_(A)5(.4)r0 (2.11)

and using (2.6), (1.10), and (2.10), we can rewrite the biorthogonality condition (2.5) in

terms of polynomials:

(¢,_,.¢) = 0 for all _ e n,-2 (2.12)

and

(_.-1,':I',-,-1) # O. (2.13)

Note that, except for the case of Hermitian A = A H (cf. Chapter 5), the formal inner

product (2.11) is indefinite. Therefore, in the general case, there exist polynomials • # 0

with "length" (_, 'I') = 0 or even (,I,, ,I,) < 0.

A polynomial _,_-1 E l'I,_a, q',-I ¢ 0, that fulfills (2.12) is called a FOP (with

respect to the formal inner product (2.11)) of degree n - 1 (see, e.g., [BreJ, [DraJ, [Gut]).

Note that the condition (2.12) is empty for n = 1, and hence any 'I'0 = a0 # 0 is a FOP

of degree 0. From (2.12),

_,-l()_) = a0 + alA + --- + a,,-l_ "-1

is a FOP of degree n - 1 -if. and only if. its coefficients a0 .... , a,,-1 are a nontrivial solution

of the linear system

#o #1 #2 "'" Pn-2

121 "" ""

t22 ."

• " 122n--5

12n-2 ...... 122n-5 122n-4

Here

I dr °

dr 1

O"2

Orn-2

-- _O-n_ 1

12n--I

12.

/2n+1

Z2n-3

(2.14)

pj=sTAJro=(M, 1), j = 0,1,...,

are the moments associated with (2.11). A FOP On-1 is called regular if it is uniquely

determined by (2.12) up to a scalar, and it is said to be singular otherwise. \Ve remark

that a FOP of degree 0 is always regular. With (2.14), one easily verifies the statements

in the following
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Proposition 2.3.
a) A regular FOP _,_-1 has exactiy degree n - 1. In particular, a regular FOP is unique

if it is required to be monic.

b) A regular FOP of degree n - 1 exists if, and only if. the coet_cient matrix of (2.14) is

nonsingular.

c) Let _-1 be a regular FOP (with respect to the formM inner product (2.1 I)) of degree

n - 1. Then, a reg'ular FOP of degree n exists if, and only if, (2.13) is satisfied.

We remark that, by part b) of Proposition 2.3, singular FOP's occur if, and only if, the

corresponding linear system (2.14) has a singular coefficient matrix, but is consistent. If

(2.14) is inconsistent, then no FOP (I'n-1 exists. This case is referred to as deficient, and

by relaxing (2.12) slightly, one can define so-called defieien_ FOV's (see [Gut] for details).

Simple examples (see, e.g., [FN1, Section 13]) show that the singular and deficient cases

do indeed occur.

Now let us return to the classical nonsymmetric Lanczos process 2.1. Using (2.8),

(2.10), (2.11), and part c) of Proposition 2.3, we conclude that a serious breakdown occurs

if, and only if, no reg-uIar FOP exists for some L < L,. In this case, the termination index

L is the smallest integer L for which there exists no regular FOP of degree L.

On the other hand, there is a maximal subset of indices

{nl,n2,...,ns} C_ {1,2 .... ,L,}, nl :-- l < n2 < '" < nj <_ L,, (2.15)

such that, for each j = 1,2,..., J, there exists a monic regular FOP _,_j-1 E lI w -1. Note

that nl = 1 since qs0(A) - 1 is a monic regular FOP of degree 0. Furthermore, three

successive regular FOP's _'b-_ -I, kt'w -i, and _'b +_ -l are connected via a relation of the
form

_, (x) - ¢,, _,-1
(2.16)

where @nj-1 E IInj+_n j, 6,b-1 E C.

The recurrences (2.16) for FOP's were mentioned by Gragg [Gra, pp. 222-223] and by

Draux [Dra]; also, in the context of the partial realization problem, by Kung [Kun, Chapter

IV] and Gragg and Lindquist [GL]. For a proof of (2.16), we refer the reader to [Gut].

Now, setting, in analogy to (2.10),

v,j = ¢,_i_5,i_,(A)r0 and wn i = ¢,_j¢,_j-I(AT)so,

where Cni, Cn i ¢ 0 are scaling factors, we obtain two sequences of vectors {v,_j }]=, and

{w,,i }]=1 which, in view of (2.16), can be computed by means of short recurrences. These
vectors will be called regular vectors, since they correspond to regular FOP's. Note that

vl and wl are always regular. The look-ahead Lanczos procedure is an extension of the
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classicalnonsymmetric Lanczosalgorithm: in exact arithmetic, it generatesthe vectors v,,

and w,,, j = 1,..., J. If nj = L. in (2.15), then these vectors can be complemented to a

basis for an A-invariant or Ar-invariant subspace of C N. An incurable breakdown occurs

if, and only if, nj < L. in (2.15). Finally, note that the regular vectors v, b and u',, are

uniquely defined (up to a nonzero scalar) by the biorthogonality relations

T WTUn3w._v= =0 for all v e K.,__(r0,.4), w _ K.,-:(so,.4T),

j = 1,...,J.
(2.17)

The look-ahead procedure we have sketched so far only skips over exact breakdowns.

It yields what is called the nongeneric Lanczos algorithm in [Gut]. Of course, in finite

precision arithmetic, a viable look-ahead Lanczos algorithm also needs to leap over near-

breakdowns (2.9). Roughly speaking, a robust implementation should attempt to generate

only the "well-defined" regular vectors. In practice, then, one aims at generating two

sequences of vectors {v.i,}_;I and {wnj, }_=1, where

c_ j, := 1, (2.18)

is a suitable subset of (2.15). We set j_ = 1, since vz and w: are always regular.

Taylor ['ray] and Parlett, Taylor, and Liu [PTL] were the first to propose such a

practical procedure. However, in [Tay, PTL], the details of an actual implementation are

worked out only for look-ahead steps of length 2.

In [FGN, FN1], Freund, Gutknecht, and Nachtigal have proposed an implementation

of the look-ahead Lanczos method for general complex non-Hermitian matrices. The algo-

rithm can handle look-ahead steps of any length and is not restricted to steps of length 2.

On many modern computer architectures, the computation of inner products of long vec-

tors is a bottleneck. The algorithm described in [FGN, FN1] has the additional feature

that it requires the same number of inner products as the classical Lanczos process, as

opposed to the look-ahead algorithm described in [Tay, PTL], which always requires ad-

ditional inner products. In particular, our implementation differs from the one in ITay,

PTL] even for look-ahead steps of length 2.

In the next section, we present a sketch of the look-ahead Lanczos algorithm proposed

in [FGN, FN1] and list some of its basic properties.

2.3. The look-ahead Lanczos algorithm

First, we introduce some notation. As in the last section, n = 1, 2,... denote the indices

of the Lanczos vectors v,, and w,,. From now on, we will always normalize the Lanczos

vectors so that

I1,,.11= IIw.ll= 1, rt = 1,2, .... (2.19)
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For simplicity, we set nk := n3_ for the indices of the "well-defined" regular vectors, cf.

(2.18). However, notice that there is no guarantee that the indices nk generated by the

look-ahead Lanczos algorithm in finite precision arithmetic actually satis_" (2.1S). The

index k = 1,2 .... is used as a counter for the computed regular Lanczos vectors vnk and

LUn_.

In order to obtain complete bases for the subspaces K,(r0',A) and K,,(so,Ar), we

need to add vectors

Vn E K,,(ro,.4)k K,,-l(ro,A) and wn E Kn(so,AT) k K.-I(So,-4T),
(2.2o)

n = nk-1 + 1,...,nk - 1, k = 2,3,...,

to the two sequences of computed regular vectors v,_ and w,,, k = 1, 2,..., respectively.

The vectors in (2.20) are called inner vectors. We will refer to both the regular and the

inner vectors v, and w,, generated by the look-ahead variant as right and left Lanczos

vectors, in analogy to the terminology for the classical nonsymmetric Lanczos Algorithm

2.1.

For each fixed n = 1,2,..., we denote by I = l(n) the number of the last computed

regular vector with index _< n. Then, the first n Lanczos vectors vl,. • •, v,, and wl,..., wn

generated by the look-ahead Lanczos process can be grouped into l blocks

V (k) = [Vn_ t'nt+l

V (I) -" [t'nl Una+l

W (k) [w.. w. +x ""Unk+l--I ] _ -_- • ,

k = 1,2,...,l - 1,

• .. w,,,+, .-- w,,].

(2.2;)

In the sequel, we denote by

hk =nk+1--nk, k= 1,2,...,I-1, ht =n-nt

the number of vectors in each block. Note that the first vectors v,,_ and w,, k in each block

are just the regular vectors. The/th block is called complete if n = nt+1 - 1: in this case.

at the next step n + 1, a new block is started with the regular vectors vn,+t and wn,+l.

Otherwise, if n < nt+l - 1, the/th block is incomplete and at the next step, the Lanczos

vectors vn+l and w,+l are added to the lth block as inner vectors.

So far, we have not specified how to actually construct the inner vectors. The point is

that the inner vectors can be chosen such that the v,'s and w,_'s from blocks corresponding

to different indices k are still biorthogonal to each other. More precisely, in analogy to the

biorthogonality relation (2.5) for the classical Lanczos algorithm, we have

(Iv(j))Tv(k) _. { 0D(k)

ifj#k,
j,k = 1,2,...,/. (2.22)

ifj =k,
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V_eremark that the inner vectors constructed becauseof an exact breakdown correspond

to singular or deficient FOP's, while the inner vectors constructed becauseof a near-
breakdown correspondto polynomials which in general are combinations of reguIar, sin-
gular, and deficient FOP's.

Next, we show that the matrices D (k) in (2.22) are necessarily nonsingular, exc, for

possibly the lth block, i.e.,

D (k) is nonsingular, k = 1,2,...,1 - 1, and D (t) is nonsingular if n = n_+l - 1. t2.23)

Indeed, assume that D (_/ = (W(k))TV (k) is singular for some k _< l, where, in tile case

k = l, the/th block is complete. Then, there exists a vector z such that

(W(k))TV(k)z = 0 and V(k)z 7_ O. (2.24)

With (2.22) and (2.24), it follows that 6 = t',,_+ t + V(k)z fulfills

wTf_ = 0 for all wE K,_+,__(so,Ar). (2.25)

Using (2.17) and (2.25), we conclude that _ = Cv,,k+ _ for some scalar 0 ¢ 0, which is

impossible.

With these preliminaries, the basic structure of the look-ahead Lanczos algorithm is

as follows.

Algorithm 2.4. (Sketch of the look-ahead Lanczos process.)

O) Choose to, so E a N with to, so 7_ O;

Set = "o/I1"o11,w, =  o/llsoJI;
Set V (1) = vl, IV (1) = wa, D (1) = (W(1))Tv(z);

Seth1 = l, l = 1, vo = wo =0, Vo = Wo =0, p1 =_1 =1;

For n = l,2,... :

I) Decide whether to construct vn+l and w,_+l as regular or i_ner vecrors

and go to 2) or 3), respectively;

2) (Regular step.) Compute

5,_+1 = Av,, - V(1)(D (t))-I (IV(t))TAv,,

_ V(t-a)(D(l-x))-i (W(t-_))rAvn,
('_ %)

_,_+_ = Arwn - W(t)(D(t))-T(v(t))T ATw,_ -'-

_ W(Z-_)(D(t-1))-r(V(t-1))rArw,_,

set nt+_ = n + l, l = l + l, V (t) = W (t) = O, and go to 4);

3) (Inner step.) Compute

f_n+l = Av,_ - (nVn -- (rl,/pn) V,-1

_ V(t-_)(D(t-1))-l(w(t-1))TAvn,

Wnq-I --_"ATwn -- (nWn -- (rln/(n) wn-1

_ W(t-1)(D(t-1))-T(v(t-1))TATwn;

(2.27)
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4) Computep.+, = II -+,1t and = I1 -+,11;
_P.+i = 0 or _.+i = O: set L = n, and stop;

Otherwise, set

v.+_ = _.+_/p.+_, w.+_ = _.+_/_.+_,

l "'(I) --" [V {I) Vn+I ], W (1) = [ W(l) u'n+l ] ,

D (t) = (W(1))Tv(1)"

(2.2s)

If only regular steps 2) are performed, all blocks have size hi = 1 and Algorithm 2.4 reduces

to the classical Lanczos process. Therefore, the strategy for the decision in step 1) should

be such that regular steps are performed whenever possible and blocks of size hk > 1 are

built only to avoid exact or near-breakdowns. A practical procedure for the decision in

step 1) will be discussed in Section 2.4.

In (2.27), (,, and r/,, n = 0, 1, , are recurrence coefficients with r/r,k = 0, k = 1 o

One may choose these coefficients so that they remain the same from one block to the next

and change only with respect to their index inside the block, n--nk, or one may choose these

coefficients so that the5' change from one block to the next. For instance, one practical

choice for the basic three-term recursions

v = A,,. - C,,,. - ,7,,(v.-,/p,,) and w = ATw. - (nw. --

for generating the inner vectors in (2.27) is Chebyshev iteration [Man], where the recurrence

coefficients are derived from suitably scaled and translated Chebyshev polynomials. In this

case, the translation parameters could be adjusted using spectral information obtained

from previous Lanczos steps. We do not necessarily advocate the use of fancy recursions in

(2.27). From our experience, the algorithm we propose builds very small blocks, typically

of size 2 or 3. Except for artificially constructed examples, the largest block we observed

in test runs with "real-life" matrices was of size 4. It occurred for the SHERMAN5 matrix

from the I-Iarwell-Boeing set of sparse test matrices [DGL] where out of 1500 steps, the

algorithm built 2 x 2 blocks 49 times, 3 x 3 blocks 7 times, and one 4 x 4 block (see [FN2,

Example 2]). Hence, the recursion in (2.27) is not overly important, and in our experiments,

we have used the recursion coefficients (,, = 1 and, if n 7t nk, r/,_ = 1. Finally, one could

consider orthogonalizing (in the Euclidean sense) the right respectively left Lanczos vectors

within each block. However, for the blocks we have seen built, such an orthogonalization

process did not lead to better numerical properties of the algorithm. Therefore, in view

of the additional inner products which need to be computed, orthogonalizing within each

block is not justified.

Next, we list some basic properties of Algorithm 2.4 which will be used in the sequel.

First, note that the Lanczos vectors generated by Algorithm 2.4 indeed satisfy the block
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biorthogonality relations (2.22). The proof is standard, using induction on n. and is

omitted here• Setting, in analogy to (2.1),

w,,=[w, u,2 ... w,] =[w¢,) w¢2) ... w¢o],
_2.29)

one clearly has

= {w,-,zIz c°} i230/

Moreover, the recursions for the v's in (2.26) and (2.27) can be rewritten in matrix formu-

lation as follows:

AV,, = V,,+lH(_ "). (2.31)

Here,

where

pn+le

Htl ---

_i #2 0 ... 0

")'2 a2

0 "'. "•• "'. 0
• . . .

fit
0 ... 0 7t o_t

is an n x n block tridiagonal matrix with blocks of the form

(2.32)

(2.33

m

* * 0 "'"

• .

Pm,+l *

0 Pnk+2 "" ""
• . , ,

, , .

0 *

• °

0 . 0
, 7k = (2.34)

"•

.. ,.....

• • -. , *

0 ...... 0 P,lk+l-1 *

The blocks/?k are in general full matrices. Furthermore, for k = 1,..., l - 1, the matrices

ak, /3k, and 7k are of size h_ x hk, ht,-1 x hk, and ht, x hk-1, respectively. The matrices at,

/?t, and 7z corresponding to the current block I are of size ht x hz, ht-1 x ht, and ]2t x ht-a,

respectively. Here ht = ht if the/th block is complete•

In view of (2.33) and (2.34), " (*)/-/n is an upper Hessenberg matrix with positive subdi-

agonal elements, and hence

rank H (O = n. (2.35)
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In exact arithmetic, the stopping criterion in step 4) of Algorithm 2.4 will be satisfied

after L, steps, where L, is given by (2.3) and (2.4), except in the very special situation of

an incurable breakdown. Recall from Section 2.2 that an incurable breakdown occurs if,

and only if, nj < L, in (2.15). One can show (of. [Gut]) that, if nj < Z.. Algorithm 2.4

will produce, starting with the regular vectors v,_ and w,,_ where nt = n j. infinite blocks

V (l) and W (0 of nonzero Lanczos vectors such that (Wt0)Tv(0 is the infinite zero matrix.

We would like to stress that incurable breakdowns are very rare and do not present

a problem in practice. Furthermore, even in the case of an incurable breakdown, the

look-ahead Lanczos process still yields information on the spectrum of A, as Taylor [Tay]

showed in his Mismatch Theorem (see also [Gut, Par]). For later use, we summarize the

termination properties of the look-ahead Lanczos process in the following

Proposition 2.5. There is a termination index L <_ N such that, in exact arithmetic,

Algorithm 2.4 will either stop in step n = L with PL+I = 0 or _L+I = 0. or, starting with

the regular vectors VL+a and WL+l, an incurable breakdown will occur. If PL+I "- 0 or

(L+I = O, then vl,..., VL or u'l .... , WL span the A-invariant subspace I(L(va, .4) or the

A r-invariant subspace KL (So, At), respectiveIy. Moreover, in M] cases,

,X(Hc) C_ ),(A). (2.36)

2.4. The look-ahead strategy

In this section, we discuss the criteria used to decide in step 1) of Algorithm 2.4 whether

a pair of Lanczos vectors v,,+1 and u,,_+l is built as inner vectors or as regular vectors.

We propose three criteria, namely (2.40)-(2.42) below. If all three checks (2.40)-(2.42)

are satisfied, then v,+l and w,_.l are constructed as regular vectors, otherwise, they are

constructed as inner vectors. Let us motivate these three criteria.

First, recall (el. (2.23)) that for t,,+l and w,+l to be built as regular vectors it is

necessary that D (0 is nonsingular. Therefore, it is tempting to base the decision "'regular

versus inner step" solely on checking whether D (0 is close to singular, and to perform a

regular step if, and only if,

O'min(D (0) >_ tol, (2.37)

for some suitably chosen tolerance toI. For example, Parlett [Par] suggests tol = el/4 or

tol = _/3 where e denotes the roundoff unit. Then (2.37) would guarantee that complete

blocks of computed Lanczos vectors satisfy

o'mi,(D (k)) > tol, k = 1,2, ....

This, together with (2.22), would imply by [Par, Theorem 10.1] that

tol tol

Orrnin(Vn) _' _ and O'min(Wn) _> _, _q =/2k -- 1, k -- 1,2, .... (2.38)
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Since the columns of I_ and I,l,',_ are unit vectors, O'min(I_) and O'min(lI'n ) are a measure

of the linear independence of these vectors: in particular, (2.38) would ensure that the

Lanczos vectors remain linearly independent. However, in the outlined algorithm, the

block orthogonality (2.221 is enforced only among two or three successive blocks, and in

finite precision arithmetic, biorthogonality of blocks whose indices are far apart is typically

lost. The theorem assumes that (2.22) holds for all indices, and without this, the theorem

fails in finite arithmetic. We illustrate this with a simple example.

Example 2.1. In Figure 2.1, we plot amin(D (l(n))) (dots), min_<k<t(,_) (Crmin(D t_') )) solid

line), and v'_ ami,(V,,) (dotted line), as functions of the iteration index n = 1,2 .... , for a

random 50 x 50 dense matrix. The theorem predicts that

v_ O'min(V.) > min (amin(D(k))),
- l_<k<t(.)

which is clearly not the case.
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Figure 2.1. Crmin(D(l(n)) ) (dots), minl<_k<l(n)(amin(D(k))) (solid line), and

x/'ff Crrnin(Vn) (dotted line), plotted versus the iteration index n.

As this simple example shows, the check (2.37) alone does not ensure that the corn-
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puted Lanczosvectorsaresu_ciently linearly independent. In particular, if tlle look-atlead
strategy is basedonly on criterion {2.37). the algorithm may produce, within a block, kanc-

zos vectors which are almost linearly dependent. When this happens, the check (2.37) usu-

ally fails in all subsequent iterations and thus the algorithm never completes the curre'lt

block, i.e., it has generated an artificial incurable breakdown.

In addition, numerical experience indicates another problem with t,2.37): for values

of tel which are "reasonably" larger than machine epsilon, the behavior of the algorithm

is very sensitive with respect to the actual value of _ol. We also illustrate this with an

example.

Example 2.2. Here we consider the 3-D PDE

£u=f on (O, 1) x(O, 1)x(O, 1), (2.39)

where

0 e

( , _%o)u+30(x+y+ + l+x+y+z

with Dirichlet boundary conditions u = 0. The right-hand side f is chosen such that

u = (1 - z)(1 - y)(1 -..-)(1 - e -=) (1 - e -_') (1 - e -_)

is the exact solution of (2.39). \Ve discretize (2.39) using centered differences on a uniform

15 x 15 x 15 grid wi_h mesh size h = 1,/16.. This leads to a linear ss.:rem (1.1) with

real nonsymmetric coefficient matrix .4 of order N = 3375 and 22275 no_zero elements.

We applied the QMR Algorithm 3.1 based on the look-ahead Lanczos Aigorithm 2.4 to

this linear system. As initial guess, we used .r0 = 0. and, in Algorithm 2.4. ,_ = r0 wa.<

chosen. This example was run on a machine with e _ 1.3E-29. In the first case. we ,,_t

fol = eI/4 _ 6.0E-0S: while in the second case, we set tel = e1/a _ 2.3E-10. In Figure 2.2.

we plot Crmin(D(l(n)) ) versus the iteration index n for the two runs. the dotted line for e I/I

and the solid line for eI/3. In the first case, the algorithm starts building a bIock which it

never closes, and the singular values clearly become smaller and smaller. Yet if tel is only

slightly smaller, as in the second case, the algorithm runs to completion, in this case solving

the linear system to the desired accuracy, and thus indicating that the block built in the

first case was not a true, but an artificial incurable breakdown. Furthermore, in the second

case, the QMR approach takes n = 149 steps to reduce the norm of the initial residual

by a factor of 10-6; see Figure 2.3, where the relative residual norm II .ll/I! 011 is plotted

versus n (solid line). For the run with tel = e1/4 _ 6.0E-08, the resulting convergence

curve is shown as the dotted line in Figure 2.3. Notice that, due to the artificial incurable

breakdown, QMR does not converge in this case.
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Figure 2.2. eI/4 (dotted line) and e 1/3 (solid line), plotted versus the iteration

index n.
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Figure 2.3. Relative residual norm II_,ll/Its011 plotted versus n.

These numerical examples clearly show that the decision "regular versus inner step"

cannot be based on (2.37) alone. Instead, we propose to relax the check t2.37), so that

it merely ensures that D (l('*)/ is numerically nonsingular, and to add the checks (2.41i

and (2.42) below which guarantee that the computed Lanczos vectors remain sufficiently

linearly independent. Hence, instead of (2.37), we check for

>_c, (2.40)

where e denotes the roundoff unit.

Our numerical experiments have shown that typically the algorithm starts to generate

Lanczos vectors which are almost linearly dependent, once a regular vector v,_+a was

computed whose component Av,, E Kn+x(r0,A) is dominated by its component in the

previous Krylov space K, (7"0, A) (and similarly for w,,+l).

In order to avoid the construction of such regular vectors, we check the 11-norm of the
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coefficients for I 'tl-1) and I .'(l) in i'2.26); v,+l can be computed as a regular vector onIy if

rz, -- l

E
j_ i'1I_ I

and

((D'l-1))-l(IV(l-1))r.4t',_)j I <_ n(.4)

71

j_tll

(2.4t)

Here n(A) is a factor depending on the norm of .4; we will indicate later how this factor

is computed. Similarly, we check the h-norm of the coefficients for IV (1-1) and 11"ll) in

(2.26); w,_+a can be computed as a regular vector only if

nt --1

E
j=nl- t

and

((D(I-I})-T(v(I-1))TATw,)j I _ n(A)

_-_ ((D(O)-T(V(O)TATw,)j <n(.4).
J-----hi

(2.42)

The pair vn+1 and w,+l is built as regular vectors only if all the checks in (2.40)-(2.42)

hold true.

\Ve need to indicate how n(A) is chosen in (2.41) and (2.42). Numerical experience

with matrices whose norm is known indicates that setting n(.4) = ll.4tl is too strict and can

result in artificial incurable breakdowns, A better setting seems to be n(A) = 10. I[.4[[, but

even this is dependent on the matrix. In any case, in practice one does not know II.411. and

there is also the issue of a maximal block size, determined by limits on available storage.

To solve the problems of estimating the norms and a suitable factor n(.4), as well as cope

with limited storage and yet allow the algorithm to proceed as far as possible, we propose

the following procedure. Suppose we are given an initial value for n(.4), based either on

an estimate from the user (for example, n(A) from a previous run with the matrix .4), or

by setting

n(A) =max {[[.4v, {[, IIArw, U}.

Note that here A denotes the matrix actually used in generating the Lanczos vectors, thus

including the case when we are solving a preconditioned linear system (cf. Section 3.6).
\Ve then update n(.4) dynamically, as follows. In each block, whenever an inner vector is

built because one of the checks (2.41) or (2.42) is not satisfied, the algorithm keeps track of

the size of the terms that have caused one or more of (2.41)-(2.42) to be false. If the block

closes naturally, then this information is not needed. It', however, the algorithm is about

to run out of storage, then n(A) is replaced with the smallest value which has caused an

inner vector to be built. The updated value of n(A) is guaranteed to pass all the checks in
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(2.41" and (2.42) at least once,and hencethe block is guaranteed to close.This also frees
up the storage that was usedby the previousblock, thus ensuring that the algorithm can
proceed.

2.5. Implementation details

\Ve now turn to a few implementation details for Algorithm 2.4'. In particular, we show
that our implementation of the look-aheadLanczosprocessrequires the samenumber of
inner products per step as the classical Lanczos Algorithm 2.1. For a regular step, one

needs to compute D (l), (IV(t))rAcn, and (Wtl-1))T.4vn in (2.26). For an inner step, one

needs to compute (lV(l-1))rAv,_ in (2.27) and to update D (0 in (2.28). We will show that

for a block of size hi, only 2hi inner products are required: 2hi - 1 will be required to

compute D (z), and one inner product will be required to compute (IV(l))T.4v,. We will

obtain (W(t-1))TAv, without peHorming any inner products. Note that a block of size

hi in Algorithm 2.4 corresponds to ht steps in Algorithm 2.1, which each require 2 inner

products. In addition, in step 4) of the look-ahead Lanczos algorithm. Euclidean norms

of 2 vectors of length .Y need to be computed. However, for a robust implementation of

the classical Lanczos process it is also advisable to scale the Lanczos vectors z,_ and wn in

Algorithm 2.1 to have unit length, cf. [Tay, PTL].

To simpliG' the derivations, we will use the "monic" versions

1 1

_,, = ¢---_-v,_= _Sn__(.4)r0 and t5,_ = _-_-w,, = q,,__(.4r)s0 (2.43)

of the Lanczos vectors v,_ and wn. where _5,__1 E H,_-I is monic and <),_, c'_ E C. By

i:.(l). /_(t)..., we denote the matrices defined as in (2.21) and (2.22/, with the monic

vectors instead of the original Lanczos vectors. Clearly, all quantities involving the original

vectors vn and w, can be obtained from the corresponding quantities involving i,,, and zi';,,

simply by scaling. Finally, we remark that, using a similar argument as in (2.44) below,

one easily verifies that

(I_"(z))T.45, = (?(t))rArff,, and (r3/(t-1))rAOn = (l)(z-l))r.4rff,,.

Therefore, the coefficients (D(I))-T(v(I))TATwn and (D(Z-1))-T(v(I-1))TA:Fwn, which

occur in the recursions for the left Lanezos vectors in (2.26) or (2.27), can be generated from

(D(O)-_(W(O)TAv, and (D(_-_))-_(W(I-1I)TAv,, without computing any additional in-

ner products.

Consider first /_(t). Using (2.43) and the fact that polynomials in A commute, we

deduce that

tJG. = sToj_l(A)_,__,(A)ro = sT_m_,(A)_j_,(A)ro = wm-rsj. (2.44)
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This showsthat the matrix L) (0 is symmetric, and hence we only need to compute its

upper triangle.

We will now show that once the diagonal and first superdiagonal of/)(l) have been

computed by inner products, the remaining upper triangle can be computed by recurrences.

Let tbj and f'm be two vectors from the current block. Using (2.27) and the fact tha* the

inner vectors from block l are biorthogonal to the vectors from the previous block, wc lave

_;r_.== _y(A_=_,- ;=-,_;m-,- ,=-,;'=-=)
= (.4_,)_;'m-, - (m-_eta=-, - ,=-__;rO=.=
= (_j+, +(,_, +,,_,_,)r_=_,, (=_,_T_m_,. ,=_, _Tc,=_=

Thus, tbTim depends only on elements of Z) (1) from the previous two columns, and hence,

with the exception of the diagonal and the first superdiagonal, can be computed without

any additional inner products. Note that the recurrences and the biorthogonality used

in the above derivation are enforced numerically, and so computing tbYi'm by the above

recurrence should give the same results - up to roundoff- as computing the inner product

directly.

We will now show how to compute (IV(t))r,4t3,_ with only one additional inner product,

while (I._'(t-_))r.4_?,, can be obtained with no additional inner products. Consider 72,f.4_,,_,

for t_j a vector from either the current or the previous block. We have

tvT.qsn = (.4Tff';)T_?n = (tvj+l 4" (iwi + tlju)i-I )Tz3=

For j < nt - 1. (I._'(t-_))TT;',_ = 0, and hence _r,4_= = 0. For j -- nl - 1, the above

reduces to zbr 1AQ_ = g,r,_ , which is computed as part of the first row of/)(t) For
_1-- r_l /_q

n_ < j < nt+_, all of the terms needed are available from/)(0. Finally, for the last vector

in the current block, j = r,_+_ - 1, we do not have tc,,_+_^,rt;',,,, and hence have to compute it

directly, thus requiring another inner product.
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3. A quasi-minimal residual method for general non-Hermitian matrices

We now turn to linear systems(1.1). From nowon, it is always assumedthat .4 is nonsin-
gular. Furthermore, all iterative algorithms consideredin the sequelare Krylov subspace
methods, i.e., their iterates x,,, n = 1,2, .... satisfy (1.2). where z0 E C :v is any given

initial guess for the exact solution A -1 b of (1.1). Finally, r, = b- .4x, always denotes the

residual vector corresponding to the nth iterate z,.

3.1. The quasi-minimal residual approach

In this section, we describe the basic idea of the QMR approach for solving general non-

Hermitian linear systems (1.1).

We set

p0= llr011, = r0/p0. (3.1)

Let vl,v2,...,v, be the right Lanczos vectors generated by Algorithm 2.4, with the nor-

malized initial residual vl as one of the two starting vectors. By the first relation in (2.30),

we have the parametrization

x. = x0 + I'_,z, z E C", (3.2)

for all possible iterates (1.2). Note that the second starting vector, w2 E C N, is still

unspecified. Due to the lack of a criterion for the choice of uh, one usually sets wl = Vl in

practice.

From (3.1) and (2.31), the residual vectors corresponding to (3.2) satisfy

f (n+l) _ H(e) ) (3.3)

Next, we introduce an (n + 1) x (n + 1) diagonal weight matrix

fL,=diag(wl,w2,...,w,+l), wj >0, j= 1,...,n + l, (3.4)

to serve as a free parameter that can be used to modify the scaling of the problem. With

it, (3.3) reads

(n+l) H(_)z)r, = V_+lf2-_lf2, (Poq -

= Vn+lf/_ "l (d,-,- _.H_e'z), with dn
(n+l)

0._1 _0 61

(3.5)

Ideally, we would like to choose z • C" in (3.5) such that Ilr.ll is minimal. However, since

in general V,,+I is not unitary, this would require O(Nn 2) work, which is too expensive.
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We will instead minimize just the Euclideannorm of the bracketed terms in (3.5), Z.e., we

will choose z = zn E C" as the solution of the least squares problem

- f2n.l-I n Zn =
z_C"

(3.6)

By (2.35) and (3.4), H(, _1 and l-l, H(, ") are (n + 1) x n matrices with full column rank n. This

guarantees that the solution :,_ of (3.6) is unique and hence, via (3.2), defines a unique nth

iterate zn. In view of the minimization property (3.6), we refer to this iteration scheme as

the quasi-minimal residual (QMR) method. Clearly, the QMR iterates still depend on the

choice of the weights a;j in (3.4). In our numerical experiments, the simplest scaling

w_=l, j=1,2,..., (3.7)

gave satisfactory results. Recall from (2.19) that all the columns of I'.+i are unit vec-

tors. Hence, the scaling (3.7) ensures that all basis vectors vj/_.,j, j = 1,..., n + 1, in

the representation (3.5) of r,, have the same Euclidean length; this is a "natural" require-

ment. However, better strategies for choosing fl, might be possible, and therefore we have

formulated the QMR approach with a general scaling matrix fin.

For the solution of the least squares problem (3.6), we use the standard approach (see,

e.g., [GVL, Chapter 6]) based on a QR decomposition of fl,,H(,,_):

(3.8)

Here, Q, is a unitary (n + l) x (n + 1) matrix, and R, is a nonsingular upper triangular

n x n matrix. Inserting (3.8) in (3.6) yields

:EC" :EC"

Hence, z, is given by

• tn
zn = R_lt,, where t, =

Tn

=Q.d.. (3.9)
=

Furthermore, we have

lid,,- = (3.10)

We conclude this section by summarizing the basic structure of the QMR algorithm.
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Algorithm 3.1. (QMR algorithm.)
O) Choose xo 6 C'" and set ro = b- Ax0. P0 = i[r0[[, th = ro/po;

Choose wl C'v with [[u,l[[= 1;
Forn = 1, O

1) Perform the nth iteration of the look-ahead Lanczos Algorithm 2.4;

This yields matrices Vn, _+1, H(,,e) which saris& (2.3I);

2) Update the QR factorization (3.8) of fl.H_ '} and the vector t. in (3.9);

3) Compute

zn = Zo + I'_R_ltn;

4) lf z,_ has converged: stop.

(3.11)

3.2. Implementation details

In this section, we give some of the details for the actual implementation of steps 2), 3),

and 4) of the QMR Algorithm 3.1. In particular, it is shown that the QMR iterates x, can

be computed with short recurrences. This approach for updating the iterates x,, is based

on a technique which was first used by Paige and Saunders [PSI in connection with their

SYMMLQ and MINRES algorithms for real symmetric matrices.

First, note that the QR decomposition (3.8) of firth (e) can be computed by means

of n Givens rotations, taking advantage of the fact that f'lnH(n _) is an upper Hessenberg

matrix• Hence, the unitary factor in (3.8) is of the form

where, for j = 1,2, .... n,

Gj =
I j-1 0 0 1

0 cj sj ,

0 -s--f cj

with 2 4-Isjl 2 1. (3.13)cj E R. s i E C. c) =

Recall that, in view of (2.33) and (2.32), _,_H_ _) is block tridiagonal. Therefore, the upper

triangular factor in (3.8) is of the form

0

0

E.2 0 3 0 "'"

,52 _3 "'. "'.

"'. _3 "'. "'.
• • ,

• •

''° "'* **" O

0

Oi

E!

(3.14)
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where the blocks dk and ek are of the same size as the blocks ak and 3k. respectively.

in (2.33). Moreover, the diagonal blocks 6k are nonsingular upper triangular matrices.

Clearly, a QR decomposition based on unitary matrices (3.12) limits fill-in to the row

above each block 3k in (2.33). Hence each of the blocks 8k in (3.14t has possible nonzero

entries only in its last row.

Next, we note that the decomposition (3.8) is easiIy updated from the factorization

of fL___ pr(+) of the previous step n - 1 Indeed, to obtain R, one only needs to compute
"* n--] " *

its last column,

[#, "" _,,]T=ane_ "_, (3.15)

and append it to R,-1. This is done by first multiplying the last column of f_,_H_ _) by

the previous Givens rotations; by (2.33), this last column has zero entries in positions

1,2,...,na, where

f max(nt-1 - 1, 1) if v,_ is an inner vector,
nG / max (nt-_ - 1, 1) if vn is a regular vector.

Therefore, only the Givens rotations with indices nc,nG + 1,...,n - 1 have to be applied,

and, by setting

_n-

#
L/

0

0 _] [+n°O (3.16)

we obtain the desired vector (3.15) up to its last component _,,. It remains to multiply

(3.16) by a suitably chosen Givens rotation Gn which zeros out the last element z., =

a.',+_p,+l. To achieve this, set

Cn -- , ,-qn _ Cn --_ ifp¢0.

en = O, s-g = 1, if # = O.

(,3.17)

and finally one gets I-in = c,_# + snu. For later use, we notice that

]'Sn]-tn] : ¢._n+lPn+l, (3.1s)

which is readily verified using (3.17). The vector t,_ in (3.9) is updated by setting
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Clearly, t, differs from t,-1 only in its last two entries which are given by

r. = c.?. and f.+l = -s--2 f.. (3.19)

Next, we turn to the computation of the QMR iterates x,_ in (3.11). We define vectors

Pi via

P, = [PI P2 ... p,_] = I'_R_ 1. (3.20)

Then, with (3.11) and (3.9), it follows that

•rn = Zn-1 -'_ Pnrn.

It remains to show how to compute pn. In analogy to the partitioning of V, in (2.21) and

(2.29), we group the columns of P,_ into blocks

p, =[p(a) p(2) ... p(0]. (3.21)

With (3.20), (3.14), and (3.21), one obtains the relation

and thus p, can be updated via short recurrences.

Finally, for step 4) of Algorithm 3.1, a convergence criterion is needed. We stop the

QIVIR iteration as soon as

I1_.tt< _o,. I1,'o11; _3.23)

here tol is a suitable tolerance, e.g., tol = 10 -6. In the QMR algorithm described so far.

neither the residual vectors r, nor their norms IIr.ll are generated explicitly. However, in

part a) of the next proposition, we derive an upper bound for [[r,I[ which is available at

no extra cost. In our implementation, the convergence criterion is checked for this upper

bound, (3.24), rather than t]r.[l. Once this test is satisfied, we switch over to checking

(3.23) for the true residual norm tlr.[I. Typically, this is necessary only in the last one or

two iterations, since (3.24) is a good upper bound for [Ir,[[.

The residual vector itself can be easily updated at the expense of one additional

SAXPY per iteration, based on the recursion given in part b) of the following

Proposition 3.2.

a)

b)

Forn = 1,2,... :

I1",,11< I1"oll_ + 1 1-_ "',,,-,_,,I max (_o,/_s);
j=l,...,n+l

r. = Is.let._1 + c.f.+l v.+a.
_n+l

(3.24)

(3.25)
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Proof. By taking norms in (3.5) and with (3.10), we obtain

llr.It < ItV.+,ll. II_;'II. I_.+,1. (3.26)

Now, from (2.19) and (2.29), I'_+1 has n + 1 columns of Euclidean norm I, and this implies

IIV.+,ll _<VU$_. ,.27)

Furthermore, by (3.4),

Finally, by (3.19),

t1_;'11< max (1/_). (3.2s)
-- j=l,...,n+l

le.+,l = le,l I,,_'" s.-,,.l, (3.29)

where, in view of (3.9), (3.5), and (3.1),

3, = I1_oll_,, (3.30)

and by combining (3.26-3.30), one obtains the inequality (3.24).

Now we turn to part b). By inserting z = zn from (3.9) in (3.5) and using (3.8), one

obtains

r_ = ?,_+lYn+a, (3.31)

where

Yn+l = n+l'_'n %On

From (3.12), one readily verifies that two successive vectors !/,+1 and yn in (3.31) are

connected by
Cn

Y,+I = -s,y,_ + _v,+l. (3.32)
0.2n+ 1

Finally, by inserting (3.32) in (3.31) and using the second relation in (3.19), we arrive at

(3.25). o

3.3. The connection between QMR and BCG

In this section, we are concerned with the connection between QMR and BCG. In partic-

ular, it is shown that BCG iterates can be easily recovered from the QMR process.

In the BCG approach, one aims at computing iterates x, which are characterized by

the Galerkin type condition

wT(b- Az,,) = 0 for all w • Kn(so,AT), Xn • :CO+ tt'n(ro,A). (3.33)

(see, e.g., [SAM]). Here, so • C N is any nonzero vector. Usually, one sets So = r0. In the

classical BCG algorithm [Lan2, Fle, Jac], the iterates (3.33) are generated as follows.
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Algorithm 3.3. (BCG algorithm.)
O) Choose Zo E C N and set qo -- ro = b- Azo"

Choose so E C N, So _ O, and set gto = ro - so"

Forn=l _ ... :

1) Compute_n = rTn_lrn-1/glT_l.'[qn-1 and set Xn = x.-i + _nqn-l"

Set r,_ = r,,-a - 6,_.4q,_-1 and 1=, = _,-a - _5,_.4rq,-1:
~T _T

2) Compute Pn -- rn rn/rn-lrn-1;

Set qn = rn + Pnqn-1 and _,, = _,, + p,,27,,_1;

3) If r,, = 0 or _,, = 0, stop.

BCG is closely related to the classical nonsymmetric La.nczos algorithm. Indeed (see,

e.g., [S_l]), for n = 1,2,...,

rn-l=¢nV,,, ¢,EC, ¢_¢0, and _,,-i=¢,w,, CnEC, ¢_:0, (3.34)

where v,_ and wn denote the vectors generated by the classical Lanczos Algorithm 2.1 with

starting vectors

r0 and So. (3.35)

Unfortunately, like the Lanczos algorithm, BCG is also susceptible to breakdowns and

numerical instabilities. Obviously, Algorithm 3.3 breaks down prematurely, if

_T
q,__z.4qn_l = 0, r_,_l _ 0, rn-I _ 0, (3.36)

or

-r ~

r,_lr,_l = 0, r,_-I # 0, r,-1 ¢ 0, (3.37)

occurs. We will refer to (3.36) and (3.37) as breakdown of the firs! and second kind.

respectively. In general, Galerkin iterates (3.33) need not exist for every n. This is the

cause of the breakdown of the first kind. Indeed, one can show that (3.36) occurs if no

BCG iterate z,, exists. Breakdowns of the second kind have a different cause: by (3.34).

(3.37) is equivalent to a serious breakdown in the classical nonsymmetric Lanczos process.

Next, we rewrite the Galerkin condition (3.33) in terms of the look-ahead Lanczos

Algorithm 2.4, started with the initial vectors (3.35). This yields a formulation of the

BCG approach for which breakdowns of the second kind, except for ones caused by an

incurable breakdown in the look-ahead Lanczos process, cannot occur. In analogy to (3.2),

we use the parametrization

x. = Xo + V,_u,,, u. E C", (3.38)

for the BCG iterates. Then, by (2.31), the corresponding residual vector satisfies

rn = b - Ax. = V_ (fn - Hnun) - (Un)n Vn+], with f. = poe_ n). (3.30)
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By inserting (3.39) in (3.33) and using (2.30), it follows that the iterate (3.3S) satisfies

(3.33) if, and only if,
w.rv. (f. - H._.)= (u.).W/_.+l. (3.40)

To simplify the discussion of (3.40), we will attempt to recover the BCG iterate only when

the current block l = l(n) in Algorithm 2.4 is completel Therefore, in the sequel, it is

always assumed that n = nt+l - 1. This ensures that, in view of (2.22) and (2.23), the

linear system (3.40) reduces to

_r_, = f,, (3.41)

from which we can now derive a simple criterion for the existence of the nth BCG iterate.

Proposition 3.4. Let n = nt+l - 1, I = O, 1, .... Then, the following three conditions are

equivalent:

(i) the BCG iterate z. BcG det]ned by (3.33) exists;

(ii) Hn is nonsingular:

(iii) c. # o.
Moreover, if x__x_ exists, then

r"Is"[_ (3.42)2:,nlgG_ : _QMR + _Pn,
;r n C 2

t r_ = ]lr0tl. 1_1_2..-s.-1_.1 _a . (3.43)
_,'n+ l Cn

Proof. Clearly, an nth BCG iterate exists iff the linear system (3.41) has a solution. From

(3.39), (2.33), and (2.34), the extended coefficient matrix [f, H,, ]of (3.41)is an upper

triangular matrix whose diagonal elements are all nonzero, and thus it has full row rank

n. Consequently, (3.41) has'a solution iff Hn is nonsingular. This shows the equivalence

of (i) and (ii).

Next, using (3.8). (2.32), and (3.12), one readily verifies that

1.-1 0 ] R..On-lf2n-lH,, = 0 c,
(3.44)

This relation implies that (ii) and (iii) are equivalent.

Now assume cn _ 0. From (3.41) and (3.44) it follows that

u" = R_l [I_O-' 1/cnO ] Qn-lfln-xf''
(3.45)

Recalling the definitions of d, and f,_ in (3.5) and (3.39), and using (3.9), we can rewrite

(3.45) as follows:

u. = z. + R_ 1 _'./c. - r. "
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By comparing (3.38) and (3.46) with (3.2) and (3.9), and b.vusing (3.20), we obtain the
relation

QMR( _'_ )Xn_'_ = X n Jr _ -- rn Pn
Cn

which, by (3.19), is just (3.42). By inserting (3.41) in 3.39). it follows that

rU = -(u.).o.+, (3.47)

From (3.47), (3.46), and (3.9), we obtain

IrnBC':_ -- ]t_n+ll]cn _nTn [
where _, = (R,)n,,. (3.48)

In view of (3.18),

ll .+,ll = p.+1 - Is. .l (3.49)
t_n+l

Then, by inserting (3.49), (3.29), and (3.30) in (3.48), we get (3.43), and this concludes

the proof. 7__

Proposition 3.4 shows that existing BCG iterates can be recovered easily from the

QMR process. By (3.43), ]Ir,BccII can be computed at no extra cost from quantities which

are generated in the QMR Algorithm 3.1 anyway. In particular, one may monitor I[r,BcGN

during the course of the QMR iteration, and compute a:,_'c via (3.42) whenever the actual

BCG iterate is desired.

Finally, we remark that CGS [Son] and Bi-CGSTAB [Van] are modifications of the

BCG Algorithm 3.3. In many cases, these algorithms have better convergence properties

than BCG. However, neither CGS nor Bi-CGSTAB addresses the problem of breakdowns.

Indeed. one can show that, in exact arithmetic, CGS as well as Bi-CGSTAB break down

every time BCG does.

3.4. A convergence theorem

In this section, we derive bounds for the QMR residuals which are essentially the same as

the standard bounds for GMRES. To the best of the author's knowledge, this is the first

convergence result for a BCG-like algorithm for general non-Hermitian matrices.

Let L denote the termination index of the look-ahead Lanczos Algorithm 2.4, as

introduced in Proposition 2.5. We remark that, in exact arithmetic, the QMR Algorithm

3.1 will also terminate in step n = L. For a diagonalizable matrix M, we denote by

_(M) = min IlXlI. IIX-1]I
X: X-1MX diagonal

the condition number for the eigenvalue problem of M (see, e.g., [BBG, p.46]).

The main result of this section can then be formulated as follows.

33



Theorem 3.5. Suppose that the £ x [, matrix HL generated bv £ steps of the Iook-at:ead

Lanczos Algorithm 2.4 is diagonalizable, and set

H = f_L__HL_-[I_I. 13.50)

Then, for n = I,_,...,o L - 1, the residual vectors of the QMR Algorithm 3. I satisfy.

117",,1[< tk0II,_(H) _ + 1E, max (_,/_,j), (3.51)
j=l,...,n+l

wh ere

e, = rain max I_,(,X)l. (3.52)
4,EII,: 4,(0)= 1 ,_E _,(A)

Moreover, if Algorithm 2.4 terminates with pz+l = O, then ZL = A-lb is _he exact soIution

of .4x = b.

Proof. Using (3.26-3.28), (3.10), (3.5-3.6), and (3.1), one readily verifies that

where 0,, is given by

11..1t_<Ikotl v_ + 1o,, m_,, (_,xt,,,_),
j= l,...,n+l

:EC"

Therefore, for the proof of (3.51), it remains to show that

(3.53)

O. _(H) e.. (3.54)

In the following, let n E {1,2,...,L - 1} be arbitrary, but fixed. By

.]HL = 0 *

and (3.50), we have

= " " ,-1 for all z E C". (3.55)H 0 0

Recall that HL, and therefore also H, is an upper Hessenberg matrix with nonzero subdi-

agonal elements. This implies that

= Ia rI._,}.
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Using (3.55-3.56), we can rewrite (3.53) as follows:

HL is assumed diagonalizable, so, by (3.50), H is also diagonalizable, and by expanding

e_L) into any set of eigenvectors of H, we deduce from (3.57) that

0,_ < _(H) min max I@(A)I. (3.5S)
-- @EH,_ :(I,(O)=I ,ke,k(H)

By (3.50) and (2.36), we have A(H) - A(HL) C A(A), and thus (3.58) is equivalent to the

desired inequality (3.54).

Finally, we need to show that XL = A -1 b, if Algorithm 2.4 terminates with PL+] = O.

For n = L and PL+a = O, the least squares problem (3.6) reduces to a linear system

with coefficient matrix _L-1HL. Since A is nonsingular, by (2.36), this linear system is

nonsingular, and hence it can be solved exactly. Therefore, rn -- 0 and this concludes the

proof. []

Recall (cf. Proposition 2.5) that, in exact arithmetic, it can also happen that the QMR

algorithm terminates with PL+I _ O. In this case, one restarts the QMR method, using

the last available QMR iterate as the new initial guess. Theorem 3.5 shows that XL-1

is a good choice. However, the finite termination property of the look-ahead Lanczos

Algorithm 2.4 is usually lost in finite precision arithmetic. In particular, situations where

the QMR algorithm needs to be restarted are very rare in practice.

We remark that for the "natural" scaling wj =- 1, the bound (3.51) simplifies some-

xvhat.

Next, we contrast the bounds (3.51) for QMR with the standard bounds [SS2] for

GMRES. Assume that ,4 is a diagonalizabIe matrix. Then. the residuals r G'_/RF-_,_generated

by the GMRES algorithm (without restarts) satisfy

]]r MRSSll Ilro]l cCA) ,, n = 1,2,... ,

where, as before, _,, is given by (3.52). Hence, up to the slow growing factor _ + 1 in

(3.51) and different constants, the error bounds for QMR and GMRES are essentially the

same,

In general, simple upper bounds for (3.52) are known only for special cases. For

example, assume that the eigenvalues are contained in an ellipse in the complex plane

which does not contain the origin:

c E, 0¢E.
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Let fl # fa denote the two foci of £. The ellipse can be represented in the form

with 7" > 1.

.Moreover, let R be the unique solution of

lf, I + IAI
Ik - AI'

R>I.

The linear transformation

maps £ onto the ellipse

z =
2 -/1 -A

fl -- f2

and the origin 0 in the A-plane onto a point a E Cg,_R on the boundary of ,5'n in the z-plane.

Here, gn is the ellipse defined as in (3.59), with r replaced by R. Clearly, 0 _' ,5' implies

R > r. Then, by applying Theorem 3.6 below, we obtain the following upper bound for

(3.52):
r n + 1/r n

s,_ <_ R'* + I/R n' n=1,2, ....

Theorem 3.6. Let r >_ I. a E O£n, R > r. Then,

r n + l/r"
min max IO(z)l < n = 1 9 (3.60)

*En.:4(o)=1 =Ee, - R '_ + I/R"' '-' ....

The upper bound (3.60) is due to Fischer and Freund [FF, Theorem 2]. Furthermore, in

[FF] it is shown that equality holds in (3.60), if r > 1 and R is not "too close" to r.

3.5. QMR for shifted matrices

In this section, we are concerned with situations where .4 is given as a shifted matrix of

the form

.4 = M +aI, il/_ E C N×N, a £ C. (3.61)

Obviously, one has

I(,(ro, A) = K,,(ro,2l) and K,,(so,A r) - K,(so,Mr), n = 1,2,..., (3.62)

and it is easily verified that the look-ahead Lanczos Algorithm 2.4 applied to A or M indeed

generates identical basis vectors for the Krylov subspaces (3.62), provided the recurrence

coefficients _',_ in (2.27) are shifted correspondingly. More precisely, we have
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Proposition 3.7. Let vn and w,_ (respectively f,,_ and d'n) be the Lanczos vectors gener-

ated by Algorithm 2.4 applied to M (respectively .4 = M + aI) with recurrence coe_cients
o o

(n and rl, (respectively (n - (n + _ and r_n = r],_). Then, the termination index [. (of.

Proposition 2.5) is the same in both cases, and

_n =v_ and d,n=w_, n=1.2, .... L.

Furthermore, for n = 1,2,..., L,

AV,=V,+IH(')(a), H(n')(a):=H(,')+a[IO"], (3.63)

where H(ne) denotes the upper Hessenberg matrix (2.32) generated by Algorithm 2.4 applied

to M.

Now suppose we want to solve, using the QMR method, m shifted linear systems

(M + ajI)x (j) = b, j = I,_,...,') m, (3.64)

which differ only in the shifts crj. In view of Proposition 3.7. all m runs of the QMR

Algorithm 3.1 can be based on only one run of the look-ahead Lanczos Algorithm 2.4

(applied to M).

A sketch of the resulting QMR process for solving (3.64) is as follows.

Algorithm 3.8. (QMR algorithm for solving m shifted systems (3.64).)

0) For j = 1, 2,..., m, set x_ j) = 0 and r_ j) = b;

Set po= Ilbll, = blPo;

Choose u,1 E C N with ]]W 111 =
Forn= 1,2,... :

1) Perform the nth iteration of the look-ahead Lanczos Algorithm 2.4 applied to M;

This yields matrices Vn, I_+_, H_ e) which satisfy MI'_ = I_+lH(_e) ;

2) For ai1 j = 1,2,..., m for which z_ ") has not converged yet •

Update the QR factorization

_,H(e)(aj) = (Q_))H [ _ j) ]

or the vector j) (s.9));
Compute

g') +

3) If MI x_ ) have converged: stop.

Finally, we recall (cf. (1.9)) that, for typical appfication which lead to shifted systems

(3.64), the matrix M and the right-hand side b are real, and only the shifts aj in (3.64)
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are in general complex. Obviously, the Lanczos vectors generated within Algorithm 3.S

are alI real then, as long as one chooses u,1 E FIN and. in (2.27) real recurrence coefficients

{,, and rl,. Therefore, even in the case of complex shifts, no complex quantities occur in

step 1) of Algorithm 3.8.

3.6. Preconditioned QMR

As for other conjugate gradient type methods, for solving realistic problems, it is crucial to

combine the QMR algorithm with an efficient preconditioning technique. In this section.

we show how to incorporate preconditioners into the QMR algorithm.

Let M be a given nonsingular N x N matrix which approximates in some sense the

coefficient matrix A of the linear system (1.1), Ax = b. Moreover, assume that ;lI is

decomposed in the form

._I = M_ M2. (3.65)

Instead of solving the original system (1.1), we apply the QMR algorithm to the equi'_-alent

linear system

A'y=b', where A'=_!/I_AM_ "l, b'=M_-'(b-Axo), V=:lf2(X-Xo). (3.66)

Here x0 denotes some initial guess for the solution of Ax = b. The iterates y, and residual

i blvectors r n = - A_y, for the preconditioned system (3.66) are transformed back into the

corresponding quantities for the original system by setting

x, = z0 + ._'lI( 1y, and r,_ = M1 r_,. (3.67)

For the special cases ,'l/'1 =/" or M2 = [ in (3.65) one obtains r{ght or left preconditioning.

respectively.

Using (3.67), the QMR Algorithm 3.1 combined with preconditioning can be sketched

as follows.

Algorithm 3.9. (QMR approach with preconditioning.)

O) Choose Xo e C N and set r_ = :'t/'ll(b- Azo), p0 -- I1_;11, = _/p0, = 0;
Choose w, e c N with llw,ll = 1,

For n = l, '_ . . ._, :

t) Perform the nth iteration of tile look-ahead Lanczos Algorithm 2.4 (applied

to A');

This yields matrices Vn, V,,+_, H(ne) which satisfy A'V,_ = V,_+_H(_);

2) Update the QR factorization (3.8) ot'gl,,H_ e) and the vector t,, in (3.9);

3) Compute y,, = V,,R_1t,,;

4) If yn has converged: compute xr, = xo + ilf2-1y,, and stop.
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In the caseof right or left preconditioning, Algorithm 3.9 simplifies somewhat. In

general, however, for the QMR algorithm applied to a preconditioned system, one has to

be able to compute M_lz, M_rz, M_lz, and M_rz, for arbitrary vectors z.
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4. Lanczos methods for complex symmetric matrices

In this chapter, we consider the QMR method and related algorithms for the special case

of complex symmetric matrices. Throughout this chapter, it is assumed that .4 = .4 7`

4.1. The Lanczos recursion for complex symmetric matrices

As already pointed out by Lanczos [Lan4, p. 176], work and storage of the classical

Lanczos Algorithm 2.1 can be halved if A is Hermitian respectively complex symmetric,

by choosing starting vectors so = F0 respectively so = r0. The resulting Hermitian Lanczos

method has been studied extensively (see [GVL, Chapter 9] and the references therein).

In contrast, the literature on the complex symmetric variant is scarce and restricted to the

application of the algorithm to computing eigenvalues of complex symmetric matrices (see

Moro and Freed [MF] and Cullum and Willoughby [CW, Chapter 6]). Here, we hope to

convince the reader that the complex symmetric Lanczos algorithm, especially combined

with look-ahead, is also very useful for solving linear systems.

Obviously, if one chooses so = r0 and sets _'n -= fin in Algorithm 2.1, then all left

and right Lanczos vectors coincide, i.e., v, = wn. Hence, Algorithm 2.1 reduces to the

following procedure.

Algorithm 4.1. (Classical Lanczos method for .4 = AT.)

O) Choose ro 6 C N with ro _ O:

Set fh = to, Vo = O;

Forn = 1, 9-, ... :

i) Compute =
ff fl, =0: set L = n -1 and stop:

2) Otherwise, set v,_ = 9,/fln;

3) Compute an = vr Avn;

Set G+I = Av, - a,v, - fl, v,-1.

For the special case of Algorithm 4.1, the properties (2.5) and (2.6) in Proposition "2.2

reduce to:

vrkv n= {0,1, ififkk=Cn.n, k,n=l,9-,...,L, (4.1)

and

Kn(r0,A) = span{vl,V?,...,vn}, n = 1,2,...,L. (4.2)

Notice that (4.1) and (4.2) just state that the Lanczos vectors v_,..., vn form an orthonor-

real basis for K,(ro, A) with respect to the (non-Hermitian) inner product

(X,y) :'- yTx, X,y E C N (4.3)
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We remark that (4.3) is the proper (cf. Craven [Cra]) "inner product" for complex

symmetric matrices. Unfortunately. it has the defect that there exist vectors z, E C:: which

are quasi-null [Cra], i.e., (v,t') = 0, but v # 0. Consequently, as in the case of the general

classical Lanczos Algorithm 2.1. exact and near-breakdowns in the complex symmetric

Lanczos Algorithm 4.1 cannot be excluded. Indeed, in view of (2.8), an exact breakdown

occurs if, and only if, one encounters a quasi-null vector _;,.

Therefore, as in the case of general non-Hermitian matrices, in order to obtain a stable

implementation of the complex symmetric Lanczos process, one needs to use a look-ahead

variant of the method. Clearly, for complex symmetric A and with identical starting

vectors r0 = s0, the left and right Lanczos vectors generated by the look-ahead Lanczos

algorithm coincide. In particular, as in the case of Algorithm 4.1, work and storage for

the complex symmetric variant is only half of that of the look-ahead Lanczos Algorithm

2.4 for general non-Hermitian matrices.

A sketch of the resulting complex symmetric look-ahead Lanczos process is then as

follows.

Algorithm 4.2. (Sketch of the look-ahead Lanczos process for A = AT.)

O) Choose ro 6 C N with ro # O;

Set =  o/11 o11;
Set V (1) = vl, D (1) = (V(1))Tv(1);

Seth1 = 1, l = l, vo = O, Vo = O, pl =1;

For n = l, 2, . . . :

1) Decide whether to construct v.+l as a regular or an inner vector

and go to 2) or 3), respectively;

2) (ReguIar step.) Compute

_.+1 = Av,, - V(O(D(O) -I (V(I))TAvn

_ VU-1)(D(Z-1))-I (V(I-1))TAvn,

set nt+l = n + 1, l = 1+ 1, V (0 = O, and go to 4);

3) (Inner step.) Compute

f_.+x = Av. - (.v. - (rl./p.) v.-i

_ V(I-1)(D(t-1))-I(V(t-1))TAv.,

4) Compute P,_+I = I1_-+,11;

I-f p,,+l = O: stop;

Otherwise, set

Vn+l -- _;n+l/Pn+l, V (l) = IV (/) V.+l], D (i) = (V(I))Tv (l).
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We conclude this section with a result which further clarifies the connection of the

complex symmetric Algorithm 4.1 with the general classical Lanczos Algorithm '2.1. First.

recall that, unlike Hermitian matrices, complex symmetric matrices do not have any special

spectral properties. Indeed (see, e.g., [HJ, Theorem 4.4.9]), any complex N x .\' matrix is

similar to a complex symmetric matrix. This result entails that the classical nonsymr. "ric

Lanczos Algorithm 2.1 differs from the complex symmetric Algorithm 4.1 only i:. the

additional starting vector So which can be chosen independently of r0 in Algorithm '2.1. A

strict statement of this correspondence is given in the following

Theorem 4.3. Let M be a complex .\" x N matrix and ro E C N, ro 7_ O.

a) There exists a complex symmetric N x N matrix A which is similar to M:

M = XAX -1 where X is nonsingular. (4.4)

b) Set r_o = X-avo and So = x-T_o. Let t,n, wn, c_n, 3,_, 7n respectively T3_, &n, j_ be the

quantities generated by Algorithm 2.I (applied to 3/I and started with to, so) respeccivety

AIgorithm 4. t (applied to A and started with _o). Let L denote the termination index for

Algorithm 4.I. Then, for n = 1,_,...,_ L:

t'n = X-Iv, "-" XTwn, _'n -" an, (,'_n) = [3n'rn. (4.5)

.i= 1 _J ! =

Proof. Only part b) remains to be proved. First, by means of (4.4), we rewrite Algorithm

2.1 in terms of .4, X-a Vn, X rwn. By comparing the resulting iteration with Algorithm 4.1

and using induction on n, one readily verifies (4.5). E,

4.2. A theorem on incurable breakdowns

As seen in the previous section, complex symmetry of a matrix is not enough to exclude

breakdowns in the classical Lanczos process. However, it is possible to use the complex

symmetric structure to derive a criterion for the occurrence of incurable breakdovns.

In the following, it is assumed that A is diagonalizable. Then (see, e.g., [HJ. The-

orem 4.4.13]), A has a complete set of orthonormal (with respect to (4.3)) eigenvectors.

In particular, r0 can be expanded into eigenvectors of A. More precisely, by collecting

components corresponding to identical eigenvalues, we get

L,,

r0 _ Z Pllll
_=_ (4.6)

where p_ 7_ O, Au_ = )_tut, and, if l ¢ j, At 7_ )_i, uFuj = O.

Here, L, =/;t = L_ is just the grade of ro = so with respect to A, as defined in (2.3) and

(2.4)
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Notice that, unless all eigenvaluesof A are distinct, quasi-null vectors ut may occur

in (4.6). In view of the following theorem, this is equivalent to an incurable breakdown.

Recall from the discussion in Section 2.2 that an incurable breakdown occurs if, and only

if, nj < L, in (2.15).

Theorem 4.4. Let A = A T be a diagonMizable N x N matrix and r0 E cN. Then, no

incurable breakdown can occur in Algorithm 4.2 if, and only if. the eigenvectors in the

expansion (4.6) of ro satisfy

uTul # 0 for adl l = 1,...,L,. (4.7)

Proof. We need to show that (4.7) is equivalent to the existence of a regular FOP of

degree L, - 1 with respect to the inner product (2.11) (where now so = r0). By part b)

of Proposition 2.3, a regular FOP of degree m exists iff the corresponding moment matrix

M,_ := (pj+l)jJ=o,...,m-1 is nonsingular. By (2.11) and (4.6), we have

L,I¢

/=1

j =0,1, .... (4.s)

Moment matrices are in particular Hankel matrices. By applying Kronecker's Theorem

on the rank of infinite Hankel matrices [Gan, pp. 204-207] to Mo¢ := (#j+l)jj=0,_ .... , it

follows that

rankM_ = rank3lm = rankML-1 = L for all m >_ L - 1. (4.9)

where L is the number of poles of the rational function

OO

z j+l •
j=0

Using (4.8) and Zj_o A_/zj+' - 1/(z - A,), one obtains the following expansion of f:

f(z) = _ P_UTUl for all [z I > max IX,t. (4.10)
I----I Z -- ,_l I=I,...,L,

In particular, by (4.10), L <_ L, with equality holding iff (4.7) holds true. Hence, in view

of (4.9), ML,-1 is nonsingular iff (4.7) is fulfilled. This concludes the proof.

As mentioned, (4.7) is guaranteed if A has only simple eigenvalues. Thus we have the

following

Corollary 4.5. IrA = A T is an N X N matrix with N distinct eigenvalues, then incurable

breakdowns cannot occur in the complex symmetric look-ahead Lanczos Algorithm 4.2.
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4.3. QMtt and related algorithms for complex symmetric matrices

For the QMR approach, one can exploit the complex symmetry of A by setting

so ----r0 (4.11)

and basing it on the complex symmetric look-ahead Lanczos Algorithm 4.2. We stress

that, due to the lack of a criterion for the choice of so, one usually sets So = r0 anyway. A

sketch of the resulting complex symmetric QMR method is as follows.

Algorithm 4.6. (QMR algorithm for A = AT.)

O) Choose Zo E C N and set ro = b - Azo, po = llro[[, vl = ro/Po;

For n = l, 2, . . . :

1) Perform the nth iteration of the complex symmetric look-ahead

Lanczos Algorithm 4.2. This yields matrices Vn, I_+1, H_ (_)

which satisfy AV, T7 r_r(e).

2) [>date the QR factorization (3.8) of fL, H(, e) and the vector tn in (3.9);

3) Compute x,_ = zo + V,,Rglt,;

4) If a:n has converged: stop.

Due to the savings for the complex symmetric Lanczos Algorithm 4.2, work and storage

requirements for Algorithm 4.6 are also roughly halved, compared to the general QMR

Algorithm 3.1. In particular, Algorithm 4.6 only requires one matrix-vector product .4 • v

per iteration, as opposed to the two products A • v and A T • w per iteration for the QMR

approach for complex nonsymmetric matrices.

Obviously, the complex symmetric QMR Algorithm 4.6 can also be used in conjunction

with a preconditioner (cf. Section 3.6). Again, work and storage per iteration is roughly

halved, provided one chooses a complex symmetric preconditioner M decomposed in tl_e

form

M = ._I1:\I2 where M'2 = 3I r (4.12)

in (3.65). Note that standard techniques, such as incomplete factorization [.\Ivd\'] or

SSOR preconditioning (see, e.g., [FN1]), applied to A = A T generate complex symmetric

preconditioners which satisfy (4.12).

Finally, we remark that a simpler variant of the complex symmetric QM1R method.

based on the classical Lanczos Algorithm 4.1 rather than the look-ahead Lanczos Algorithm

4.2, is discussed in detail in the author's paper [Fre4].

In analogy to the complex symmetric variant, Algorithm 4.1, of the classical Lanczos

Algorithm 2.1, the general BCG Algorithm 3.3 reduces to a scheme which requires only

half the work and storage, if the starting vectors are chosen as in (4.11). The resulting

procedure is as follows.
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Algorithm 4.7. (BCG for A = AT.)

O) Choose xo 6 cN;

Set qo =ro = b- Axo;

Forn = 1,2,... :

I) Compute6. = rT_,rn_,/qT_l.4q._l and set x,, = xn-1 + 6nqn--l:

Set r,, = r.-1 - 6nAq.-l ;

2) Compute P, rTrn T .= /rn -- 1 rn - 1,

Set q, = rn + Pnq,-l;

3) If r, = O: stop.

However, as for the complex symmetric Lanczos Algorithm 4.1, breakdowns in Algorithm

4.7 cannot be excluded. Indeed, both kinds of breakdowns described in Section 3.3 can

occur in the complex symmetric BCG method.

Closely related to the BCG method for general linear systems (1.1) is the conjugate

gradients squared algorithm (CGS) due to Sonneveld [Son].

Algorithm 4.8. (CGS for general A.)

O) Choose Zo 6 C n and $o E C N, 8o # O;

Set po = uo = r0 = b - Axo and compute sTr0.

For n = 1,2,... :

I) Compute ak = sTrk-1/sTApk-1 and set qk = uk-1 - akApk-1;

Set xk = xk-1 + ak(Uk-1 q- qk ) and rk = rk-1 - akA(uk-1 + qk );

2) Compute flk = STOrk�sTork-l;

Set uk = rk + flkqk and pk = uk + 3k(qk + .SkPk-1);

3) If r, = O: stop.

Notice that, like general BCG, CGS has a second unspecified starting vector so. However.

unlike BCG, even with the special choice so = r0, CGS cannot exploit the complex sym-

metry of A. In particular, for A = A T, Algorithm 4.8 requires per iteration about twice

as much work as the QMR and BCG Algorithms 4.6 and 4.7.

Finally, as a special case of the general connection [Son] between the CGS and BCG

approaches, we have the following

Proposition 4.9. Let A = A T, ro = ro_:a = rocas, and, in Algorithm 4.8, So = ro. Then,

for n = O, 1,...,

r_ _,(A)r0 and r,c_ (_,(A)) _-- r0

/or some ft. 6 Hr, with ft.(O) = 1.
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5. CG-type algorithms and polynomial preconditioning for shifted Hermitian

matrices

In this chapter, we consider CO-type methods for the solution of linear systems (1.1) with

coefficient matrices of the form

A=T+ia[ where T=T H isHermitian, aER. (5.I)

Clearly, by multiplication of the right-hand side b or the unknown vector z by e -is the

more general case (1.4) can always be reduced to (5.1). Although our main interest is in

non-Hermitian A, we include the case cr = 0 and assume that A -- T is nonsingular then.

This guarantees that A is always nonsingular, and the exact solution of Az = b is denoted

by x_. = A-lb. Most of the results in this chapter are taken from the author's paper [Fre3]

on shifted Hermitian matrices.

5.1. Three CG-type approaches

We will consider three different CO-type approaches. Recall (cf. Section 1.2) that, for

shifted Hermitian matrices, it is possible to have an ideal CG-like method with iterates

characterized by the minimal residual (MR hereafter) property (1.3). The first approach

we study is the MR method based on (1.3). The second scheme is the GAL method

which aims at computing approximations z,, defined by the Oalerkin (GAL hereafter) (or

ort hogonal error [FM2]) condition

vH(b -- Axn) = 0 for all t, E K,(r0,A), x, C x0 + I(,(r0,A). (5.2)

Note that, for Hermitian positive definite A, this method is equivalent to the classical CO

algorithm (see, e.g., [PSi). While MR and GAL are standard approaches for non-Hermitian

matrices, the third method we propose is less conventional. Its iterates are defined by the

minimal Euclidean error (ME) property

11 . -*.11- min llz. -  II, x0 + K,(.4Hr0,A).
xExo+ Nn(AHro,A)

(5.3)

Note that for the Krylov subspace in (5.3) one has the identity

I(,(Agro,A) = AHK,(ro,A), (5.4)

since matrices (5.1) are normal and thus

AAH= AHA. (5.5)
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We remark that MINRES and SYMMLQ [PSI are numerically stable implementations

of the MR and GAL methods, respectively, for real symmetric matrices A. If .4 is indefinite,

a Galerkin iterate satisfying (5.2) need not exist for every n. Paige and Saunders resolve

this problem in SYMMLQ by actually working with a sequence of well-defined auxiliary

vectors from which the existing Galerkin iterates can then be computed in a stable manner.

The ME approach (5.3) is a generalization of Fridman's method [Fri] for real symmetric

matrices A. However, the algorithm he proposed is numerically unstable (see [Frel, SF]

for an explanation of the instability and a simple remedy). Fletcher [Fle] showed that the

sequences of the Fridman iterates and the auxiliary vectors generated by SYMMLQ are

mathematically equivalent. Therefore, as a by-product, SYMMLQ also yields a numerically

stable implementation of Fridman's method.

We now turn to the derivation of algorithms, modeled after SYMMLQ and MINRES,

for the actual computation of the iterates defined by (1.3), (5.2), and (5.3). The main

ingredient is the Hermitian Lanczos algorithm [Lanl] applied to the Hermitian part T of

(5.1) and with r0 as starting vector.

Algorithm 5.1. (Hermitian Lanczos method.)

O) Set _31 = r0, v0 = 0;

For n = 1,2,... :

1) Compute B. = I1 -II;
I[/3, = O: set L = n - 1, VL+l = O, and stop;

2) Otherwise, set v,_ = _,//3n;

3) Compute an = vTTvn;

Set Vn+l = Tt'n - a,v, -/3nV,a-1.

Notice that Algorithm 5.1 is just a special case of the classical Lanczos Algorithm 2.1

(applied to T and with starting vector s0 = F0). However, unlike the general Algorithm

2.1, the Hermitian Lanczos process cannot break down prematurely. In exact arithmetic,

Algorithm 5.1 stops after a finite number of steps with termination index

L = dim I(N(r0, ,4) = dim KN(ro, T). (5.6)

Moreover, with Vn defined as in (2.1) and

" 0_1 _2

f12 0_2

Tn -_ 0 "'.

• .

...

. °°

°°. "..

°°° "°°

*°° °.°

0

0

,

O_rl

(5.7)
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for the Hermitian Lanczos method, the properties (2.5)-(2.7) listed in Proposition 2.2 now

reduce as follows:

t'yv. =/., (5.s)

TV,=VnT,+[O 0 ... 0 _,+1], (5.91

A',,(ro, A) = I(,(ro,T) = span{v,,v2,...,v,}. (5.10)

Here and in the sequel, it is always assumed that n 6 {1, 2,..., L}. Note that, with

H(')= [ T"+ial']8.+,eT (5.11)

and by adding iaV, to both sides of (5.9), we obtain

AV, V,+IH(_ _) . (5.12)

Next, we rewrite the MR, ME, and GAL conditions in terms of V, and H (e). In order

to match the notations used in Chapter 3, we set p0 = 81, and thus

r0 = p0vl, Po = 8, = llr0ll • (5.13)

Proposition 5.2.

a) z MR = z0 + Vkz_) m where zi 'tR is the solution of the least squares problem

GAL
C) Z n

_6C"

XO + AHVnz ME where _ME is the solution of---" Z.,rl

poe?) = (

= xo + vnz,'_GAL where ",_'GALis the solution of

poe_ '_) = (:In + iaI,)z.

(5.14)

(5.15)

(5.1G)

Moreover, ira = 0 and T,_ is singular, then no Galerkin iterate satisfying (5.2) exists.

Proof. First, note that, by (5.13) and (5.8),

V/Hr0 =p0e_ i), j=I,2,...,L+I.

Using (5.12) and (5.8), we obtain

vH A H Air, = (H(')) H H (_).
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a) From (5.13) and (5.12), r,_ can be representedasin (3.3). With (,3.3)and (5.8), it
follows that the MR property (1.3) is equivalent to (5.14).

b) (5.4), (5.10), and (5.5)imply that

xn = Zo + AHI_z,, rn = ro - AH A Vnzn, with z, 6 C '_.

The minimization property (5.3) is equivalent to

0 = vHA(x. - Xn) = vHrn for all v E K,(r0, A).

By (5.10), it suffices to consider these equations for v = vj, j = 1,..., n, and it follows

that z, is the solution of

VHr0 = vHAHA V,z

which, by (5.17) (for j = n) and (5.18), is just the linear system (5.15).

For c), we similarly obtain that x, = xo + V,z,, satisfies (5.2) iff zn solves the linear

system

poe1 = V.HV.+IHCJ)z

whose coefficient matrix, by (5.8) and (5.11), is T, + inT,. If _r = 0 and 7', is singular,

the linear system (5.16) could have a solution only if it was consistent. Using the fact that

T,-1 is nonsingular then and/3, > 0, one easily verifies that this cannot be the case.

d) In view of (5.6), I(L = [(L(r0, A) is an A-invariant subspace and. since 7"0 E I(L,

we conclude that

x. - xo = A-fro 6 A-JKL = I(L = AHI(L •

On the other hand, x. trivially'satisfies (1.3), (5.2), and (5.3), and it follows that XL = x.

for all three methods.

5.2. Practical implementations

First, consider the MR approach. By comparing (5.14) with (3.6), we conclude that, for

shifted Hermitian matrices (5.1), the MR and the QMR methods are identical, provided

one sets _, = f,+l in (3.6) and the QMR Algorithm 3.1 is based on the Hermitian Lanczos

Algorithm 5.1. Therefore, an actual MR algorithm for matrices (5.1) can be obtained as a

special case of the implementation of the general QMR method described in Sections 3.1

and 3.2. Here, we present a slight modification of the resulting implementation which will

help to reduce complex arithmetic.

Since the Lanczos matrix T, in (5.7) is real symmetric, it follows that

2 enenT(H(,))H H(,) = _2 + a2[, +/3,+,
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is a real matrix• Consequently,one can choosethe unitary matrix Q,_ in a QR decompo-

sition

of the complex matrix (5.11) such that the upper triangular factor R,, is real. Using

standard matrix calculus, one verifies that a faetorization (5.19) with real R,, can be

constructed with a unitary matrix Q, of the form

In-2 D_ 0 In-1 Dl (5.20)

with complex diagonal matrices

Dj = diag(1,..., 1,e i_j , 1,..., 1),

T
J

and real Givens rotations

LO[lj-1 0 0 ]Gj= | 0 cj s i , with

-sj c i

_i E R,

2 2
cj E C, sj E C, cj + sj = 1.

Recall that for the QR factorization in Section 3.2 we have used slightly different unitary

matrices Q,, (cf. (3.12) and (3.13)). Also, note that, in contrast to the Lanczos matrix

generated by the look-ahead Lanczos process, H(,,_) is now a scalar tridiagonal matrix.

Hence, the upper triangular R, in (5.19) is of the form

61 _2 03 0 •.•

0 62 E3 • "• '" •

"'. 63 "'. "'.

0

0 (5.21)

_rt

0 6,,

Moreover, the factorization is easily updated

.... ° , ,. °

(3.14)).with scalar entries 6k, ek, Ok (cf.

from the one of the previous step n - 1 by simply setting

0,, = s.-23., _,, = s._lo_. + c,,-ic,_-2#n cos_.-1,

--.. --"h, -s,_-lc,,-2fl,,e '_"-t + e,-x(an - ia), 8, = [hn[,

ei_,,, = f h./[hn[ if h,_ # 0,

( 0 if hn = 0,

and

implementation of the QMR method in Section 3.2•

the resulting algorithm.

(5.22)

¢ 2 8,,/6n, #,,+i/6n. (5.23)6.= c.= s.=

Based on the QR decomposition (5.19), one then proceeds as in the derivation of the

We omit the details and only state

=
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Algorithm 5.3. (MR method for matrices (5.1).)
0) Choose x0 E C "v and set v = b- Axo, vo = p0 = P-I = 0,

_1 = _1= IFvll,co= e-1 = 1, so = s-1 = _o = O:
For n - 1,2,... :

I) 1£3n = O, stop: 2n-1 solves Az = b;

Otherwise, compu te

2) v. = v/_., _. = _,."Tv.,
v = T.,, - o<,,v.- 3...-_, 3.+1 --Ilvll,
and then 8,,, e,,, _,,, _p,, c,,, s,, using formulas (5.22), (5.23);

3) p,, =(v.-e.p.-1-8,,p,,-2)l&,,

Zn = Xn-1 + rnpn with rn = Cn_'ne i_",

"_n+l -- --Sn T"n ei¢n .

We now turn to the ME and GAL methods. First, note that the characterization

(5.2) of the GAL iterates is just a special case of the Galerkin type condition (3.33) (with

so = _-ff). Hence, as a special case of the results in Section 3.3 on the connection between

QMR and BCG, we can obtain a stable implementation of the GAL approach based on

the MR Algorithm 5.3. Instead, we now derive an implementation of the 5IE approach

and show how the GAL iterates can be recovered from the ME method.

With (5.19) and by setting

Y.=[y_ y2 ". _.]):=AHV.R; I,

it follows from part b) of Proposition 5.2 that

ME RTlt.xn = xo + Y_u, where u,, is the solution of /3xel =

Similarly, using that, by (5.11),

and with (5.19) and (5.20), one deduces from (5.16) that x_c_ exists if, and only if, c,_ _ 0

and then

, V. r diag(1,1 l, e i_),CAL £,-,5. f',, := r,Q,.,-1 , ,X n -" X 0 -.{- ...

where fin is the solution of

file1 = RTdiag(1,..., 1,c,,) ft.

Clearly, u,, and fin differ only in their last elements r/,_ and On. Moreover, with (5.12),

(5.19), and (5.20), one easily verifies that I2, is identical to Yn up to its last column _)r,.

Hence, we obtain the recursions

GAL xMEME X,ME + rl,,y,, and, if cn _ 0, x, = n-1 + _,_0,_ (5.24)X n "-

(cf. [PS]). The resulting implementations can be summarized as follows.
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Algorithm 5.4. (ME/GAL method.)
o) Choosezo c Cv _._d_et_'z = _-oa_ = _o, ': = b- AZo, vo = ,)o= O.

< = I1"11,'7o-- -!. Co= c_, = 1. so = s-1 = _o = q-1 = O:
_31 > O, set r] = ['/_I;

Forn = 1,2, -

1) If 3. O, stop: ._r--c = za_, = x.-I .-1 = x. solves Ax = b;

Otherwise, compute

2) _. = vn. T_.,

and then 8., en, _., _n, _., C., S. using formulas (5.22), (5.23);

3) 9. = e'" (-s_-1_-1 + c.-lv.)

and, if6. _ 0 and the Gederkin iterate is desired,

z GAt _ _ ME

4) Set Vn+] = V/3.+], if fln+l > O, and vn+] = 0 otherwise,

_fn "-- Cn_]. "]" ShUn+l,

x AIE .. ME
. --" a'.--1 3t- t_nYn with q. = -(e.q,.,-1 + #nrln-2)/6n.

The finite termination property of the Lanczos algorithm does no longer hold in the

presence of roundoff error (see, e.g., [GVL, pp. 332]), and the stopping criterion stated in

Algorithms 5.3 and 5.4 is not useful in practice. Instead, one should terminate the iteration

a_ soon as I1_.11is sufficiently reduced. Note that, similar to the real symmetric case

[PSI, Ilr.ll can be obtained without computing the vector r, itself by using the following

identities:

llr_mll V/2 _2 2 2= rlnOn+2,rI.+l n+l Ac

Iira"tL[1= 3.+ais.-_.-, + c.-_O,-,e;_"1.

Finally, consider linear systems .4x = b with coefficient matrices A of the .,".'.ore general

class

A=T+iaD where T=T H isHermitian, o'ER,

with D a Hermitian positive definite N x N matrix. Then, Az = b is equivalent to the

linear system

A'x' = b' where A' = D-I/2AD -1/2, z' = D1/2x, b' = D-1/°'b,

whose coefficient matrix A' is now of the form (5.1), so that we can use Algorithm 5.3

or 5.4 for its solution. Note that one never needs to form A' and b' explicitly, and it
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is straightforward to rewrite both Algorithms 5.3 and 5.4 in terms of the original linear
system .4z = b. We omit the details and only state that the resulting MR, ME, and GAL

algorithms generate iterates which are characterized by the properties (1.3) (with II II =

I[ liD -_ and I_?,(D-_ro,D-_.4)), (5.3)(with 11 II= tl lid and h',.(D-1.4HD-_ro,D-IA)).

and (5.2)(with h',(D-_r0, D -1A)), respectively.

5.3. Comparisons with other hnplementations. Operation counts

Several authors [JY, Sid, AMS] have proposed algorithms for the computation of the MR

and GAL iterates (1.3) and (5.2), respectively. However, most of these implementations

(like Orthomin and Orthores in [JY]) are modeled alter variants of the conjugate residual or

conjugate gradient algorithm for Hermitian positive definite matrices. It is well known [PS,

Cha, SF] that, for Hermitian indefinite A, these approaches are numerically unstable and

can even break down. For instance, for the GAL method this occurs whenever a Galerkin

iterate does not exist (cf. [PS] and part c) of Proposition 5.2.). The same stability problems

can arise for the non-Hermitian matrices (5.1) if cr is small. Hence, all these algorithms

derived directly from the positive definite case are stable only for matrices (5.1) which

fulfill additional requirements such as T positive definite or ]crj bounded away from 0.

Note that these two conditions are not satisfied for most of the applications mentioned in

Section 1.3.

Here, we consider only implementations which are numerically stable for the general

class of matrices (5.1). Among the proposed algorithms in the literature merely the Or-

thodir approach [JZ, AMS] for the computation of the MR iterates has this property. This

algorithm can be stated as follows.

Algorithm 5.5. (Orthodir MR implementation.)

O) Choose x0 6 C x and set so = r0 = b- Azo,

qo = Aso, s-1 = q-1 = O, vo = O;

For n = 0,1,... :

1) If q, = O, stop: z, solves Az = b;

Otherwise, compu te

2) Xn = q_r,_/llq, l[2,

27n+1 -" Xn all- )_nSn_ rn+l = rn -- )_nqn;

3) #. = q_Tq./llq.ll 2 and, if n > O, v. = Ilq.ll=/llqn_all 2,

s,_+l = qn - (#,, + io')s, - u,sr,-1,

qn+l = Tqn - l_nqn -- Unqn--1.

We remark that q,, = As,, and that the search directions sn are up to scalar factors

identical to the vectors pn in Algorithm 5.3.

Next, the results of operation counts for Algorithms 5.3, 5.4, and 5.5 are presented

in Table 5.1. Although we solve complex linear systems, most of the scalars (like a,, and
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3,, in the Lanczos step of Algorithm 5.3 and 5.4) occurring in the computations are real.

Moreover, on some machines, implementations in real arithmetic are more advantageous.

Therefore, we compare work and storage in terms of real quantities. Listed are the number

of matrix-vector products T.v, v E R N, the approximate number m of additional real

multiplications per iteration, and the number s of real vectors (of length N) to be stored.

The computation of inner products often constitutes a bottleneck on modern computers.

For this reason, we also give the number dp of dot products z • y, z, y E R N per iteration.

Finally, notice that -- based on the simple observation stated in Proposition 5.6 below

work and storage for the MR and ME/GAL methods can be significantly reduced if

the Hermitian part T of the matrix (5.1) is real. This case occurs frequently in the cited

applications, and we included the corresponding operation counts in Table 5.1.

Proposition 5.6. Let T be reM and assume that ro = b- Axo E R N. Then, M1 the vectors

vn, n = 1,2,..., in Algorithm 5.3 and5.4 are reM. In addition, for the ?vIR method, all

search directions pn are real vectors.

Note that often the right-hand side b is a real vector, and then the standard starting

guess z0 = 0 guarantees that r0 is real. In the general case b E C N and ifa ¢ 0, the

condition r0 E R u can always be fulfilled by choosing the starting vector x0 = x_ x) + iz_ 2)

(2) = 0 and z_ 1) = Imb/a. However, such a strategy might not beappropriately, e.g., z 0

desirable, if one already knows a good approximation :to for the exact solution of .4z = b.

T. v m dp s

MR Algorithm 5.3 2 18N 4 12

ME/GAL Algorithm 5.4 2 18N 4 10

Orthodir Algorithm 5.5 2 26N 8 14

If T and r0 are real:

MR Algorithm 5.3 1 9N 2 7

ME/GAL .Algorithm 5.4 1 13N 2 7

If A = T and r0 are real:

MINRES [PSI 1 8N 2 6

SYMMLQ [PS] 1 SN 2 5

Table 5.1. Work per iteration and storage for the various algorithms. Listed are

the number of matrix-vector products T. v, v E R N, the approximate number rn

of additional real multiplications, the number of real dot products dp, and the

number s of real vectors to be stored.
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To explain the numbers given in Table 5.1, a few more commentsare necessary.For
the ME/CAL algorithm, we have assumedthat the Galerkin iterate is, if desired, only
computed in the very last step of the iteration. Furthermore. in order to reduce the
computational work, note that. in the MR Algorithm 5.3, one computes the vector /Snpn

instead of p,_. Similarly, in part 4) of Algorithm 5.4, the vector y,_ itself is never needed

and, hence, r/,_y,_ is generated directly. Moreover, using fast Givens rotations (e.g. [CVL,

p.158]), we compute the rescaled vector f,_O,_ instead of _,_ in step 3) of Algorithm 5.4.

Here, f, := 1/(c,_-x cosq0,) for the case that sn-_ <_ c,-x and ]sin_n[ < loosen[, and f,_

is defined correspondingly for the remaining cases. Note that then only 4n reM multipli-

cations are needed for updating f,!), from fn-l_,_-i and v,.

We conclude this section with a few further remarks. First, Table 5.1 clearly shows

that the MR implementation stated in Algorithm 5.3 is less expensive than the Orthodir

Algorithm 5.5. For real symmetric linear systems, Algorithm 5.3 and 5.4 reduce to MIN-

RES and SYMMLQ [PS], respectively. Notice that, for the case of complex matrices

(5.1) with T and r0 real, Algorithm 5.3 and 5.4 require only little extra work and storage

compared to MINRES and SYMMLQ. Finally, consider real linear systems with matrices

A = I- S where S = -S T is real and skewsymmetric, (5.25)

(or, equivalently, A' = iA = T + iI with T = -iS = T H if rewritten in the form (5.1)).

Concus, Golub [CG], and Widlund [Wid] were the first to propose a Galerkin type method

for the class of matrices. It can be shown, that their Mgorithm is equivalent to the Galerkin

part of Algorithm 5.4 for the special case (5.25). Also, note that, in [Frel. Sto], we have

investigated an Orthodir type implementation of the ME approach for the class .4 = I - S.

The first MR-type algorithm for the family of matrices (5.25) was proposed by Rapoport

[Rap] (see also [EES, Frel] for different implementations).

5.4. Error bounds

In this section, we derive error bounds for the MR and ME methods. Let a < Ami, (T) and

3 > Amax(T) be given bounds for the extreme eigenvalues of T. Therefore, all eigenvalues

of A are contained in the complex line segment ,5' := [a + ia, fl + ia]. For the rest of

this chapter, we assume that in the Hermitian case a = 0, A = T is positive definite and

0 < _ < ft. This guarantees that 0 ¢ S.

By the standard technique, using

l(n(r0,A) = {q(A)r0 [_ • I_n--1 } (5.26)

and an expansion of r0 into orthonormal eigenvectors of A (recall that, by (5.5), A is

normal!), one obtains from (1.3) the estimate

II  RII/ll 011 < rain max l1 - A_(A)I. (5.27)
-- _EIIn-t _ES
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Similarly, with (5.4), (5.26), wededucefrom (5.3) that

- z'd ]/llz,-zol[ < rain max [1-[A]:_(_)[.
-- q'Elln-x AES

(5.2s)

With the linear transformation

z = z(A) = 2(ia - _) + fl + a (5.29)
fl --Of

which maps S onto the unit interval [-1, 1], the right-hand side of (5.27) can be rewritten

in the form

(E,,(a) :=) min max [_(z)l (5.30)
_,erl, :4,(,)=1 ze[-1,q

where
2io" +/3 + o_

a:= _ [-1,1]. (5.31)
fl-o_

Furthermore, using the identity

4 I_Xl==(fl-_)2(z(_)-a)(z(_)-a), _e S,

(note that z(k) = z(A) for all z e S) one easily verifies that the upper bound in (5.28) is

E,_+l(a ) wherejust (r)

(E(:_(a) • =) rain
_,erI,(,) (5.32)

I'In(a) :- {_ • I1,, [ _(a)--g2(a) = 1 and, if

We now turn our attention to the two approximation problems (5.30) and (5.32). It

will be convenient to represent a in the form

max ]g,(z)],
_e[-:,q

a • R, _'(a) = 0}.

a=a(¢)=a(n)cosw+ib(R)sin¢, n>l, O<c<2v, (5.33)

_(R) := _(R + ), b(R):= _7(R- )_

clearly, this is possible for any a ¢ [-1, 1]. For fixed R > 1, we set /3R = {a = a(L')10 _

¢ < 2rr} and remark that I3R = OCR just describes the boundary of the ellipse ,..CR(defined

as in (3.59), with r replaced by R) with loci at +1 and semi-axes a(R), b(R).

First, we consider the complex approximation problem (5.30). Its solution is classical

for the case of real a where Tn(z)/Tn(a) is the optimal polynomial. Here, T,_ denotes the

nth Chebyshev polynomial which, by means of the Joukowsky map, is given by"

1 ,, 1. 1 1
Tn(z) =- -_(v + v n)' z- _(v +-).v (5.34)

For purely imaginary a, the extremal polynomials were found by Freund and Ruscheweyh

[FR], but for general complex a the solution of (5.30) is not explicitly known. The following

upper bound for the optimal value of (5.30) will be used in Section 5.5.
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Theorem 5.7. Let R> landn=l,2 ..... Then,

1 2

R-----_ < En(a) < R" + 1/R"' a E /3R. (5.35)

Proof. The lower bound follows immediately from an inequality due to S.N. Bernstein (e.g.

[Mei, Theorem 74]). The upper bound is just the special case r = 1 of Theorem 3.6. J

We remark that, for fixed R > 1, the upper bound in (5.35) is optimal, with equality

holding for the two real points of 8R. The optimal lower bound is unknown, but it is

conjectured to be 2/(R" + R '_-2) which is just the optimal value of (5.30) for the two

purely imaginary points of BR (cf. [FR]).

Next, we study the approximation problem (5.32), and we will show that it is closely

related to the classical Zolotarev problem

min max [z"+r/nz"-'-_(z)l , 7?ER, n=2,3, ....
k_ EFI.- 2 zE[--I,I]

(5.36)

It is well known that there always exists a unique best approximation k0,(z; 77) for (5.36)

and the corresponding polynomials

Z n ( z ; 77) - z n + _Tn z n -1 - ff2 n ( z ; r/), r/• II, n = 2, 3,...,

are called Zolotarev polynomials. We refer the reader to [CT] for a detailed study of these

polynomials. Note that

z + 77 w (5.37)
= 2x-7(1 + I_I)" 7",( 1 + [r/i) for ]r_[ _< tan 2 2-_'

and for the remaining values of r/ there are representations of Zn(z; 77) in terms of elliptic

hmctions.

Theorem 5.8. Let a = a(_;) E I3R, R > 1, n = 2,3, .... Then, there exists a unique

optimal polynomiM _n(z; a) for (5.32). I£¢ = jTr/(n - 1) with an integer j # 0mod n - 1,

2
then T,_,(z) and E(")(a)= R"-' + 1/R"-'"• n(z; a) =- T,-l(a)

Otherwise,
Z.(z;r/)

• n(Z;a) -- Zn(a;r/)

where 77= r/(a) is the unique solution of

(5.38)

ImZ,,(a;r/)=O (respectively Z:(a;r/)=O, if aen), r/Ell. (5.39)

57



In particular, if ¢ satisfies for some integer j _ 0 mod n

jTr ,7 sin _

n a(R) + sign r/cos
B

then

a) -
a+,7)

Tn( 1 + [r_[

with ]q[-< tan22n

and E(")(a) - 2
pn + 1/pn

qER. (5.40)

(5.41)

with p defined by

1_ " b(R)2
_(p -t- -_) = a(R) 1 -t-[r_ 1 a(R) -t- sign r/ cos J_-'

P > 1. (5.42)

Proof. Writing 55 6 rI,(a)in the form 55(z) -- 1- (z- a)(z- fi)_(z), _ E II,__2,

one recognizes (5.32) as a linear Chebyshev approximation problem, for which, since a ¢

[-1, 1], Haar's condition is satisfied. Standard results from approximation theory (see,

e.g., [Mei]) guarantee that there always exists a unique optimal polynomial 55n(z; a) for

(5.32). Moreover, because of the symmetry of the problem with respect to the real axis,

_, is a real polynomial, and 55,, is characterized by assuming its maximum absolute value

at at least n points in [-1, 1] with alternating signs. This alternation property implies that

_,, has degree n - 1 or n. First, consider the case n - 1. Since the scalar multiples of T,_-I

are the only polynomials of degree n - 1 with an alternating set of length at least n, we

conclude that 55n(z; a) = T,_-I(z)/T,,-1 (a), and, in view of 55, E l'I,,(a), this case occurs

iff T,,__(a) E R and a g' R. With (5.33) and (5.34), one readily verifies that these are just

the points a = a(0) with g, = jzr/(n- 1), j ¢ 0moan- 1. Now we turn to the case

that qs,, is of degree n. Since the optimal polynomials for the Zolotarev problem (5..36)

are characterized by the same alternating property as 55n, it follows that qsn is of the form

(5.38) with a suitable r/ E R. In order to guarantee _,_ E Hn(a), 17must be the solution of

(5.39).

Now, let r] E R, It21 _< tan 2 _-_. With (5.37) and (5.34), we conclude that a satisfies

(5.39) iff

a + _ 1 _ jrr i _ . j,'r(a :=) 1 + 1,71= + )cos --n + 2(P - )sin --n (5.43)

for some p > 1 and some integer j _ 0modn. By using the representation (5.33) of a and

by equating the real (imaginary) parts of (5.43), one arrives at two real nonlinear equations

for the unknowns cos ¢ and p, and a straightforward, but lengthy calculation shows that

the solutions are given by (5.40) and (5.42). Finally, note that the first identity in (5.41)

is a consequence of (5.38) and (5.37); the second one follows from E_")(a) = 1/ITn(a)l and

(5.43). [J

For general a, (5.38) and (5.39) lead to rather complicated and not very useful formulas

for E_")(a) in terms of elliptic integrals. Next, we derive simple bounds for this quantity.
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Theorem 5.9. Let R> 1 andn = 2,3,... . Then, fora=a(_:') E /_R:

2 < E_rl(a ) < 9b"-l(n)lfn-'(¢)l +b,(n)lf,(_')l (=: B(,r)(a)) (5.44)
R" + 1/R" - - " b2,-,(n) + b](R).f:n-,(¢)

wh ere

• 1 [' sin(j ¢) / sin ¢

bi(R) = (R; - R-_)' fJ(¢) = / (-1) (/-')tj

i/sin_ # O,

i£¢ = I_-.

Both bounds in (5.44) are attained if ¢ = jr�n, j _ O modn. /n addition, the upper

estimate is sharp for ¢ = j r,/(n - 1), j _ 0 mod n - 1.

Proof. Duffin and Schaeffer [DS] showed that for any real polynomial of degree at most

n, [(I)(z)l < M on [-1,1] implies t_(a)[ < M(R n + 1/Rn)/2 for all a E BR. Application

of this result to (I),(z; a) yields the lower bound in (5.44). In order to obtain the upper

bound, we consider polynomials _(z) =- _,T,,(z) + _5T,_l(z) E H,(a) with -_,5 E R. With

(5.33) and (5.34), one readily verifies that (I) E II,(a) iff _ and _ satisfy

(R"- 1/R")f,(¢) (R "-_ - 1/R"-_)f,__(¢) 0

A routine calculation shows that this linear system has a unique solution and that

max [_(z)[ = lvl+ = B_r)(a) •

Finally, the statements on the sharpness of (5.44) follow from Theorem 5.S. [3

Note that the bounds in (5.44) are asymptotically optimal, and we have the following

Corollary 5.10. Let R > 1 and a E 13R. Then,

1

lim (E_")(a)) 1/" = lim (B_")(a)) '/" = -_.
rl -"-'-t O0 TI_O0

The typical behavior of the optimal values of (5.30) and (5.32) and the bounds stated

in Theorems 5.7 and 5.9 is illustrated in Figure 5.1. For fixed R = 1.103... and n = 30,

the four curves

2
E,(a) _ <_ E(_O(a) <_ B(O(a), a - a(¢) E/_R, 0 < ¢ _< 7r/2,

R" + 1/R _

are plotted. Note that E,(a) = E.(a) - En(-a) (and analogously for E_)(a)), and hence

it suffices to consider only the points a in the first quadrant.
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Figure 5.1. The optimal values Ek(a) and E_r)(a) of the approximation prob-

lems (5.30) and (5.32) are shown for the case k = 30 and with a -- a(¢) moving

along the quarter of the ellipse BR, R = 1.103 .... The lowest curve is Es0(a).

The other three curves display E_o)(a) and its lower and upper bounds as stated

in Theorem 5.9.

The following theorem summarizes our results on error bounds for the ,kIR and ME

methods. For the special case of matrices A = T + iaI with positive definite Hermitian

part T, we also derive an error bound for the GAL method.

Theorem 5.11. Let a <_ Amin(T) and 3 >- Am_x(T) be given, and assume that 0 < a < _3

ira = O. Let a be given by (5.3i), and let R be the unique solution of

_(n x/_ + _ + ,/42 + o5_) = R > 1. (5.45)+

Then, [or n = IT

a)

b)

lib--4xtYRII< E.(a) < 2
iF--_-;_o]l- - R,,+ 1/R.

'WEll (r) (r_I1:_._,-_,, < E.+1(a) < B.+,(a).
IIx,.-_oll -

(5.46)

(5.47)
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c) If T is positive definite, then

11z.- __llr < 1+ , )2 n- + l/n- ,,'here ,_= -.I1_.- _ollr - 4o_ + _(v_ + 7v
(5.4s)

Proof of part c). We set e. = x.-x. and _./ = eHTJe,,, j = --1,0.1, With (5.1) and

since r,, = Ae., one obtains

He. r. -- _1 + i_,*0 and II_-II_-, = _1 + a 2_-,, (5.49)

Now let u E z0 + K,(r0,A) be arbitrary. By (5.2), (u - x,)gr, = 0, and therefore

. ( )He. r. = (z. - u)Hr. = T1/2(z. - u) (T-l/2rn). (5.50)

By application of the Cauchy-Schwartz inequality to (5.50) and with (5.49), we arrive at

(5.5_)

Next, recall that, by the Kantorovich inequality (e.g. [Hou, p. 83]),

s2#,#_1 < #_ where s := (v_+ _) (5.52)

Using (5.52) and the estimate ]-/1/_-1 ____min(T 2) = a2, we obtain from (5.51)

(5..53)

Since u E Xo + Nn(ro, A) is arbitrary, Ilz. - ullz in (5.53) can be replaced by

min I1=.- _llr = min IlO(A)_olIT. (5.54)
uEzo+K. (r0,A) _EII.: _(0)=1

By expanding e0 into orthonormal eigenvectors of the normal matrix .4 and with (5.29),

(5.30), (5.31), and (5.35), we obtain

2

min II_(A)eollT < Ileollr E,(a) _< IleollT n- + l/R- (5.55)
¢I,EH. : @(0)=1

Finally, combining (5.53)-(5.55) yields the desired bound (5.48). E]

We remark that, for the special case of a = 0, (5.48) and (5.46) reduce to the usual

error bounds (see, e.g., [Sto]) for the classical conjugate gradient and conjugate residual

algorithms.
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In Theorem 5.11, we excluded the case of Hermitian indefinite matrices .4 = Y. Error

bounds for this case can be found in Chandra [Cha] for the MR method and in SF, Frel,

Szy] for the ME method.

Finally, we note that for the GAL method there are no satisfactory error bounds for

the general class of matrices (5.1).

5.5. Polynomial preconditioning

Polynomial preconditioning aims at speeding up the convergence of conjugate gradient

type methods for the solution of Az = b by applying them to one of the two equivalent

linear systems

(left preconditioning), or

T(A)Ax - T(A)b (5.56)

T(A)Ay = b, x = T(A)y (5.57)

(right preconditioning). Here T is a suitably chosen polynomial of small degree. For the

case of Hermitian positive definite A, Rutishauser [Rut] proposed polynomial precondition-

ing in the 50's as a remedy for roundoff in the classical CG algorithm. The revival [JMP]

of Rutishauser's method and the general interest in polynomial preconditioning is mainly

motivated by the attractive features of this technique for vector and parallel computers

(see [Saa2] for a survey). It is interesting to note that Lanczos seems to have been the

first to consider polynomial preconditioning. The idea already appeared in his 1953 paper

[Lan3] which, alas, is never referenced.

In this section, we study polynomial preconditioning for the class of matrices (5.1)

A = T + i,:rI. Let l > 2 be any fixed integer. We seek a polynomial T E YIl-1 with the

following two properties:

(i) the coefficient matrix T(A)A of (5.56) and (5.57) is again a shifted Hermitian matrix

of the form (5.1);

(ii) the convergence of conjugate gradient type methods, applied to the preconditioned

systems (5.56) or (5.57), is speeded up optimally.

As in the previous section, let a, fl E R be given such that

a _</_ _< fl for all eigenvalues _u of T, (5.5s)

and assume that 0 < a < fl if rr = 0. Our criteria for optimal convergence in (ii) will

be based on (5.58) as the only available information on the spectrum A and on the error

bounds stated in Theorem 5.11.

First, consider requirement (i). For any T E IIl-1, we can represent T(A)A in the

form

T(A)A = (T + iaI)T(T + iaI) = ¢_(T) + irI, (5.59)
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with 9 E Ill and r E R. Note that T, 9, and r are related by

(/_ + ia_T(p + ia) =__9(#) +it and r := ig(-ia). (5.60)

Since 9(T) is Hermitian if. and only if, 9 is a real polynomial, it follows from (5.59) that

(i) is fulfilled if, and only if, 9 E I-I_r) and r E Iq. Therefore, from now on, it is assumed

that T E IIl-1 satisfies (5.60) with 9 E l-If r) and r E R.

Next, we turn to the question of optimal choice of 9 and r. A first, very tempting

strategy is to require r = 0 and to choose 9 such that T(A)A = 9(T) is positive definite.

The preconditioned system (5.56) can then be solved by the standard CG method. Clearly,

9(T) _ I should approximate the identity matrix as best as possible. Using (5.58) and

(5.60), we conclude that such an optimal 9 is given as the best approximation in

min max I1- 9(#)1. (5.61)

For positive definite matrices A = T, this approach just leads to Rutishauser's method

[Rut]. For the non-Hermitian case a # 0, (5.61) turns out to be equivalent to the approx-

imation problem (5.32), and we have the following

Theorem 5.12. Let a # 0 and I >__2. Then, there exists a unique best approximation in

(5.61) given by

q'(#) 1 (5.62)
_-_ ' 3-c_ '

where Cz(z; a) is the extremM polynomial of (5.32) (for n = l) with optima] value E[_)(a)

(cf. Theorem 5.8). Moreover, the matrix T(A)A = 9(T) is positive definite with eigen-

rMues in [1 - E_rl(a), 1 + E}_)(a)], and for the iterates x,, of the CG method, applied to

(5.56), the estimates

I+ v/1-
IIX. -- xnIt*(T) < - rl = 1,2,... , /T/:= (5.63)

IIx. - _oll,<r) - _" + l/R-' E}r)(a) '

hold.

Proof. The linear transformation z(p) = (8 + a- 2#)/(8- or) maps [c_,3] onto [-1,1].

Moreover, (I,(z(#)) - 1 - 9(/_) defines a one-to-one correspondencebetween all 9 E HI r)

with 9(-ia) = 0 and all real polynomials • E Il_(a). This shows that (5.61) and (5.32) are

equivalent (recall that the optimal polynomial for (5.32) is real), and, hence, 9" is indeed

the unique best approximation in (5.61). The error bounds (5.63) follow from (5.48) and

(5.45) (with a = 0, a = 1 - E_")(a), and/9 = 1 + E}")(a)). [-I
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Recall (seeFigure 5.1) that for fixed I of moderate size and fixed R. E)rl(a) strongly

depends on the position of a on the ellipse/3R. In particular, if a is close to the real points

of the ellipse, E[r)(a) is significantly larger than for the other points of/3R. Therefore,

(5.63) suggests that the polynomial (5.62) will yield a poor preconditioner for matrices .4.

which are nearly Hermitian positive definite. This will be confirmed by numerical results

presented in Section 7.3. Therefore, in order to obtain a polynomial preconditioner which

is satisfactory for all a E Br, it is crucial to treat r in (5.59) as a free parameter, and, next,

we determine optimal choices of p and r for speeding up the MR and ME algorithms.

First, consider the MR method. For it, right preconditioning (5.57) is the more natural

choice between (5.56) and (5.57), since residual vectors for (5.57) are also residual vectors

of the original linear system. Let y, denote the nth iterate of the MR algorithm applied

to T(A)Ay = b, and set x PP -- T(A)yn. Moreover, let x,, be the nth approximation

generated by the MR method applied to the originaI system Ax = b. Then, assuming that

zo = xPP, it follows with (5.57)that I(n(T(A)r0, T(A)A) C Kn,(ro,A) and xPP,x,a E zo+

I¢,_,(ro,A). Hence, the minimization property (5.3)implies that lib- Ax,,,ll <_ [Ib- dxPPll.

Therefore, in view of (5.46), we conclude that, based on (5.58) as the only information on

the spectrum of A, the best possible choice of T E HI-1 is one which guarantees the

estimates

lib-A  Pll < 2
[[b-.4x0ll - R "_+ 1/R "_' n = 1,2, .... (5.64)

with R defined in (5.45). We call T E I11-1 an optimal polynomial preconditioner for the

MR algorithm if it leads to the error bounds (5.64).

Similarly, for the ME method with left polynomial preconditioning (5.56), the error

bounds (5.47) and Corollary 5.10 suggest that the best possible choice of T E l'It-i is one

for which the iterates'x PP satisfy

IIx. PP-z. tl < _(_)_,+l(a), n = 1 _ (5.65),_," ° ° ,

for some fi E BR s. A polynomial T E Ht-1 is called an optimM preconditioner for the ME

approach if it guarantees (5.65).

With this notion of optimality, we can now state the main result of this section as

follows.

Theorem 5.13. Let l >_ 2. Then,

q2t()_- ia) + ir (5.66)

where

_2,(#) =_ Tl(2# ff ____ a) _ ReTt(-a) and r = - ImTl(-a), (5.67)

64



isan optimal polynomial precondltioner for the :fir and '.\IEmethods. Here. Tl denotes

the Ith Chebyshev polynomial (c£ (5.34)) and a is given in (5.62).

Proof. First, note that. by (5.67), _l(-ia) = -it, and thus (5.66) defines indeed a

polynomial T 6 I'Ii-1. Next, consider the preconditioned matrix ,-[ = T(A)A. With

(5.58) and since T_ maps the interval [-1, 1] onto itself, it follows that the eigenvalues of

the t'Iermitian part 'I't(T) of .J. are contained in [a,#l where a := -1 - Rer,(-a) and

:= 1-ReTt(-a). Now we apply Theorem 5.11 (with a = &, fl =), and c_ = r) and

note that, by (5.33) and (5.34),

+ & + 2ir

fl - (_
= -rt(-a) e BR,.

The error bounds (5.64) and (5.65) are then an immediate consequence of parts a) and b)

of Theorem 5.11, respectively. Hence Tl-1 is an optimal polynomial preconditioner, and

the proof is complete. [_

We remark that, in [ELl"], Eiermann, Li, and Varga developed a general theory for

polynomial preconditioning for asymptotically optimal semi-iterative methods. In particu-

lar, by means of Theorem 5.13 from [ELV], one can show that the polynomial preconditioner

(5.66) is also best possible for semi-iterative procedures for the class of matrices (5.1).

Also, recall that, for the GAL approach, there are in general no error bounds on which

we could base the choice of a best possible polynomial T. However, in analogy to the case

of real symmetric matrices (see [SW, SF, Szy]), preconditioning for the GAI. method can

be motivated by its close connection (of. (5.24)) to the ME algorithm. Therefore, we

regard (5.66) also as an optimal polynomial preconditioner for the GAL method.

Finally, note that polynomial preconditioning is easily incorporated into the MR and

ME/GAL Algorithms 5.3 and 5.4. Right preconditioning leads to slightly more economical

implementations, and only this choice is considered in the sequel. The idea is to apply the

CG type methods to the linear system Tz-1 (A)Ay = b - Azo with starting guess y0 = 0.

The resulting iterates y_, of the MR and ME/GAL approaches are generated by Algorithm

5.3 and 5.4, respectively, modified in the following way: substitute y,, for zn, replace, in

(5.22), _r by r (defined in (5.67)), and finally, in step 2) of Algorithm 5.3 and 5.4, perform

the following Lanczos recursion

v = z (_') - 5,_vn - 3nVn-1,

(5.68)

where z(") := T'( _--_T- _ - a_+ a I)v"' &n:=vHz(")'

and set c_,, = &,, - ReTl(-a). We remark that for this computation only Tl, but never the

complex polynomial (5.66), is used. The actual preconditioner T_-I appears only in the
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translation of the y,, into the corresponding iterates

x. = xo + Tt-l(.4)y,, (5.69)

for the original system Ax = b. However, we do not need to generate x,, in each step.

Note that the norm lit, t] of the residual r, = b - Ax, is available (cf. Section 5.2) from

the procedure generating yn, and the iteration is stopped as soon as ][rn][ is sufficiently

reduced. Hence, x, is computed only once, namely in the very last step of the algorithm.

Finally, notice that z (") in (5.68) can be obtained by performing l steps of the classical

Chebyshev semi-iterative method (see Golub and Varga [GV]). More precisely, setting

z(") Ti(--_--_T 13+aI)v,, T':=T _+c_ 2 (5.70)i := _ 13-_ 2 I, w.-/3_a,

the three-term recurrence formula of the Chebyshev polynomials leads to the following

Algorithm 5.14. (Computation of z(") in (5.68).)

o) - =d =
1) For j = 2 .... , l, compute

z(.) O,.T,z (") _(") .
1 ='" 1-1 - zj-2'

2) Set = z}")

We remark that the computation of z (n) via Algorithm 5.14 requires 2I matrix-vector

products T.v, v 6 R N, and 21 additional real multiplications. If T and r0 are real (cf.

Section 5.3), all z/') are real too, and the work is hah'ed.

Similarly, using (5.66), (5.67), and again the three-term recurrence formula of the

Chebyshev polynomials, a routine calculation shows that the following algorithm just yields

the iterate (5.69).

Algorithm 5.15. (Computation of x, in (5.69).)

O) Set h_ ") = y. and hl") = 2w(T'y,, -(£-_- + ia)y,,);

1) For j = 2,...,I- 1, compute

(-) ,),,T,h (") I,(") 2T/( ;hj = _ j-1 -'U-2 + -a)y.

t(n)
2) Set x, = xo + _onl_ a.
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6. Complex versus equivalent real linear systems

In this section, we study connections between (1.1) and its equivalent real versions. Unless

stated otherwise, .4 is assumed to be a general complex N x N matrix. Recall that, in

view of (1.10), the iterates of any Krylov subspace method (1.2) for solving (1.1) are of

the form

z, = zo + (I'(A)ro, q5 E II,__. (6.1)

6.1. Equivalent real linear systems

By taking real and imaginary parts in (1.1), we can rewrite (1.1) as the real linear system

Re Re , .4. := (6.2)
A. Im = Im Im.4 ReA "

A second real version of (1.1) is

[ [Rea,ma]  03,Rez Re , A**:= ImA -ReA "A** -Imz = Im

Obviously, (6.2) and (6.3) are the only essentially different possibilities of rewriting (1.1)

as a real 2N x 2N system. Furthermore, note that A. is nonsymmetric if, and only if.

.4 # A H is non-Hermitian, whereas A,,, is symmetric if, and only if, A = A T. Hence, for

complex symmetric linear systems the approach (6.3) appears to be especially attractive

since it permits the use of simple CG-type methods such as SYMMLQ and MINRES for

real symmetric matrices.

In the following proposition, we collect some simple spectral properties of .4. and A...

Proposition 6.1.

a) Let J = X-lAX be the Jordan normal form of A. Then A. has the Jordan normal

form

[ o] -;] ,o4,Jo = XsX A,X, where X, := _ -iX "

In particular,

A(A.) = A(A) U A(A).

b) The matrices A** and -A** are similar. In particular,

(6.5)

-A,],-X 6 A(A**) for MI A 6 A(A**). (6.6)

_foreover,

A(A..) = {A • C [ A2 • A(AA)}.
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c) Let A - A T be complex symmetric. Then, there exists a singular value decomposition

(the so-ca]led Takagi SVD) of A of the form

A = UZU r, U unitary, E = diag(al,o'2,...,ax) _> 0. (6.7)

Moreover, .4,. is a reM symmetric matrix with spectrM decomposition

A,, = Y 0 -E Z where Y = ReU, Z = Im U. (6.8)

Proof. a) First, note that

X, = S where S:=_ --i[N IN

In particular, (6.9) shows that with X also X, is nonsingular. One readily verifies that

0

and, in view of (6.9), this implies (6.4). (6.5) is an obvious consequence of (6.4)f

b) Since

-Ix 0 .4.. --IN 0 =

the real matrices A** and -A,, are similar. Hence, (6.6) holds true. The relation between

A(A,,) and A(AA)is known (see [t-IJ, p. 214] for a proof).

c) (6.7) is the well-known Takagi singular value decomposition for symmetric matrices

(e.g. [HJ, Corollary 4.4.4]). By rewriting (6.7) in terms of the real and imaginary parts of

A and U, one obtains (6.8) (cf. IHJ, pp. 212-2131). -

Roughly speaking, Krylov subspace methods are most effective for coefficient matrices

A whose spectrum, except for possibly a few isolated eigenvalues, is contained in a half-

plane which excludes the origin of the complex plane. On the other hand, if this half-

plane condition is not satisfied and if a large number of eigenvalues of .4 straddle the

origin, usually the convergence of CG-type algorithms is prohibitively slow. Typically, in

these situations (see [Eis, Frel, Fre2] for examples), iterations based on Krylov subspaces

generated by A offer no advantage over solving the normal equations (1.8) by standard

CO. See Theorem 6.3 below for a theoretical result along these lines.

For complex linear systems which arise in practice the half-plane condition is usually

satisfied. Indeed, mostly

A(A) C {A E C JImA >_ 0}. (6.10)
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However, by rewriting (1.1) as real linear systems (6.2) respectively (6.3), one deliberately

creates coefficient matrices whose spectra are most unfavorable for Krylov subspace meth-

ods. The case (6.3) is especially bad since, in view of (6.6). A(A..) is symmetric with

respect to real and imaginary axis and hence the eigenvalues always embrace the origin.

Similarly, by (6.5), the coefficient matrix A, of (6.2) in general has eigenvalues in the upper

as well as in the lower half-plane. In particular, if (6.10) holds and, as in most applications,

the Hermitian part (A + A H)/2 of A is indefinite, the spectrum of A. straddles the origin

and the half-plane condition is not satisfied for A,. The following example illustrates this

behavior.

Example 6.1. Consider the subclass of 5.1 of complex symmetric matrices of the form

A=T+ia[ where T=T T is real and G>0. (6.11)

Obviously,

)_(A) = {)_ = # + ia [ U 6 G(T)}

c S := [_., + iG,UM + iG] (6.1:2)

where/_ = Amin(T) and/IM = )_max(T). Note that the complex line segment S is parallel

to the real axis and always contained in the upper half of the complex plane. In view of

(6.5), (6.12)implies

_(A.)={l:#+ia I#6G(T)} CSUS.

We remark that 5' U S is a tandem slit consis'ting of the two complex intervals 5" and S

which are parallel and symmetric to each other with respect to the real axis. Moreover, the

eigenvalues of A, straddle the origin, if the Hermitian part T of A is indefinite. Finally,

using (6.11) and part b) of Proposition 6.1, we obtain

A(A,,) = {A = ±x/p 2 + a 2 t # 6 A(T)}

Note that the class (6.11) is closely related to shifted skewsymmetric matrices. Indeed, if,

instead of Ax = b, we rewrite -iAx = -ib as a real system (6.2), one obtains

"GIN T = GI2N -- S, S :=
-T GIN 0(-iA). =

Then, the eigenvalues are contained in a line segment which is parallel to the imaginary

axis and symmetric with respect to the real axis:

,_((-iA),) = {)_ = a :h i# I # 6 A(T)} C [a - ip, a + ip], p = max{l#,,I, [#MI}.
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6.2. Correspondence of Krylov subspace methods

In analogy to (6.1) for complex linear systems (1.1). a Krylov subspace method for the

solution of the equivalent real systems (6.2) respectively (6.3) generates iterates

Imzn = Imzo +i(A,) ImroJ' iE...__l,

respectively

-Imz,_ = [-Imxo +i(A'')[Imro ' IE..n_l.

In the sequel, the notation

will be used.

At first glance, it might appear that Krylov subspace iterations (6.1) respectively

(6.14-6.15) for the original complex systems respectively its equivalent real versions cor-

respond to each other. However, as the following proposition shows this is not the case in

general.

Proposition 6.2. Let n E N.

a) Let c_ C H,-I. Then, :c,, = xo + ¢b(A)ro is equivalent to

[Rex,a] [Rexo] [Rero] [ Imro J (6.16)Imx,, = Imxo +il(A.) Imro +i2(A.) -Rero

where ff = qSl + iO_, if1, _2 E l'I(r)
--rt-- 1 "

rr(r) Then. (6.15) is equivalent tob) Let _ E "'n-l"

x,, = Re xn + i Ira x,_ = x0 + tI'(A.4)_-ff0 + T(AA)Ar0 (6.17)

where _ E H (') and T E II (r)[(,_-1)/2J /(,,-2)/2J are det:Jned by if(A) = g'(A 2) + AT(A2).

Proof. First, we note that, for j = 0, 1,..., r

[ ] -(A.)_= [ReA{ -ImA; ] Re(gA)J Im(gA); (6.1S)
[ImA_ ReA' J and (A..)_- - -Im(gA)_ Re(_'A? '

as is easily verified by induction on j.

70



a) Let ?j and 8j be the coefficients of the real polynomials _1 and q52, respectively.

Then,
n--I

ReqS(A) = _--_ (_,j Re A -_- 8j ImAJ),

_=o (6.19)
n--I

Im(I'(A) = _-_ (Tj ImA j + 6j ReAJ).
j=o

By reformulating xn = Xo + _(A)ro, by means of (6.19) and the first relation in (6.18), in

terms of real and imaginary parts, one immediately obtains (6.16).

b) A routine calculation, using the second identity in (6.18), shows that (6.15) can be

rewritten as

Re xn - Im{_(A'A)F0 + T(]A)A'r0 } ] "

Hence (6.15) and (6.17) are equivalent. 0

In view of part a) of Proposition 6.2, the corresponding real equivalent of complex

Krylov schemes (6.1) are iterations of the type (6.16) and not the obvious real Krylov

subspace methods (6.14). Clearly, the actual choice of the polynomials in (6.1) respectively

(6.14-6.15) is aimed at obtaining iterates which are -- in a certain sense -- best possible

approximations to the exact solution of the corresponding linear system. By using schemes

of the type (6.14), from the first, one gives up n of the 2n real parameters which are

available for optimizing complex Krylov subspace methods (6.1). Consequently, it is always

preferable to solve the complex system (1.1) rather than the real version (6.2) by Krylov

subspace methods. Furthermore, numerical tests reveal that tile convergence behavior of

the two approaches can be drastically different (see Chapter 7).

6.3. A connection between MR and CGNR for complex symmetric matrices

Now assume that A is a complex symmetric N x N matrix. Then, in view of part c) of

Proposition 6.1, A,, is a real symmetric indefinite matrix whose spectrum is given by

IJ = I,...,N}. (6.20)

Here aj = aj(A) > O, j = 1,..., N, denote the singular values of A.

Since there are simple extensions, namely SYMMLQ and MINRES, (cf. Section 5.1)

of classical CG to real symmetric indefinite matrices, it is especially tempting to solve (6.3)

by one of these methods. Recall that SYMMLQ generates iterates defined by a Galerkin

condition, whereas MINRES is based on a minimal residual MR property (cf. (1.3)). Here,
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weconsideronly the MR approach. Applied to (6.3) it generatesa sequenceof iterates :,,.
n = 1,2, .... which are characterized by

lib,,, -.4..z,,]l = min Hb., -A.,z[], z,, E z0 + I(_r)(r0*,A**)-
:_,0+t,'_j)(r;'.A.,)

(6.21)

Here, we have set

[ ] ..Re Rex,, forn=0,1,..., r 0 :=b..-A.,z0.
b,, := Im , z,:= -Imxn

(6.22)

Roughly speaking, CG-type algorithms for real symmetric indefinite systems converge

slowly if the coefficient matrix is strongly indefinite, in the sense that it has many positive

as well as many negative eigenvalues. Unfortunately, since, by (6.20),)_(A,,) is even

symmetric to the origin, A** exhibits this undesirable property. Indeed, numerical tests

show that the convergence behavior of the MR method (6.21) is practically identical to

that of the tabooed approach to (1.1) via solving the normal equations (1.8) by standard

CG [HS]. In the sequel, we refer to this latter method as CGNR. Notice that the iterates

z, of CGNR are defined by the minimization property

rain lib-Axll, _, E xo + Kz(AHro,A HA).lib- Axtll = ,ez0+t,',(A"r0,A"A)
(6.23)

Next, we prove that MR and CGNR are even equivalent, if the starting residual r_*

satisfies a certain symmetry condition. Note that, corresponding to the spectral decompo-

sition (6.8), r_* can be expanded into eigenvectors of .4** as follows:

.. [Yz]r° = Z Y c with c=

¢1

• E R 2n.

C2 n

(6.24)

Theorem 6.3. Let _:xm and xt°aNR denote the iterates generated by (6.2I-6.22) andx, n

(6.23), respectively, both started with the same initiM guess xo E C N. Assume that c in

the expansion (6.24) of r_* satisfies

1¢_1= IcN+il, j = 1,2,...,N. (6.25)

Th en,

_:_N_ _R .uR l = o,1, (6.26)_.. .-- X21+l _ ....

Proof. First, note that, in view of (6.8) and (6.24), cj and c,+j are components corre-

sponding to a pair of symmetric eigenvalues :t=aj of A**. However, for any real symmetric

linear system A**z = b,. with "symmetric" eigenvalues and "symmetric" starting residual
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r_" in the sense of (6.20) and (6.25). respectively, the MR method generates iterates with

r,-(_) .. 2 [Fre2]). Consequently, the iterates defined byz, E zo + ..Ln/2j(A,,ro ,A.,)(see. e.g.,

(6.21) satisfy
,.(r),, .. 2

z2t = z21+l E z0 + Ix I _,.-_**r 0 , A..). (6.27)

In particular, by (6.22), (6.27) shows that xi_[R _Mn-- x21+l.

It remains to prove the first relation in (6.26). To this end, we remark that

Rex ] C N. (6.28)lib**- A..zll = lib-.-t ll for all z = _ Im x ' x •

Moreover, by using (6.22) and part b) of Proposition 6.2 (applied to polynomials _(_) =

,kT(A2)), we deduce

** 2 [ Rex ] K}_)(AHro,AHA)}zo+K[r)(A,.ro ,A.,,ar):{[_imz IXEXo+
(6.29)

(notice that A = A g in (6.17)!). In view of (6.27-6.29), (6.21) (for n = 2/) can be rewritten

in the form

lib- A= RII = rain lib- AzlI,
zEzo+ h'_ ") (.4 n r0 ,A u A)

x MR • xo + K}_)(Anro,A HA). (6.30)

Finally, remark that the iterates of CGNR always correspond to real polynomials, i.e.,

ztca'¢R • xo + K}O(AHro,A HA). Hence, by comparing (6.23) with (6.30), we conclude

that zlCaxn = z MR. D

Clearly, the special symmetry condition (6.25) will not be satisfied in general. Nev-

ertheless, all our numerical experiments showed (see Examples 7.3 and 7.4) that (6.26) is

still fulfilled approximately, i.e.,

,_m MR I = O, 1, ....xl CGNR ,_ x21 ,_ X21+l, (6.31)
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7. Numerical experiments

We have performed extensive numerical tests with the QMR algorithm and all the other

iterative schemes considered in this thesis. In this chapter, we present a few typical results

of these experiments for complex symmetric and shifted Hermitian linear systems arising

from the Helmholtz equation (1.5). Numerical experiments with the QMR method applied

to real nonsymmetric matrices are reported in [FN1, FN2].

7.1. The test problems

Consider (1.5) on the unit square G = (0,1) x (0,1) with al E R a constant and a2

a real coefficient function. First, assume that u satisfies Dirichlet boundary conditions.

Then, approximating (1.5) by finite differences on a uniform m x m grid with mesh size

h = 1/(m + 1) yields a linear system (1.1) with A an N x N, N = m 2, matrix of the form

A = T + ih2D, T = Ao -alh2I, D = diag(dl,d2,...,d,). (7.1)

Here Ao is the symmetric positive definite matrix arising from the usual five-point dis-

cretization of --A and the diagonal elements of D are just the values of o2 at the grid

points.

Similarly, if we consider the real Helmholtz equation (1.5), i.e., a2 - 0, but now with

a typical complex boundary condition such as

C_U

On
on {(1,V) I -1 < V< 1}

(which is discretized using forward differences) and Dirichlet boundary conditions on the

other three sides of the boundary of G, one again arrives at (7.1) where

a/h if j = lrn, I = 1,...,m. (7.2)dj = 0 otherwise.

The test problems presented in this chapter are all linear systems Ax = b with complex

symmetric coefticient matrices of the type (7.1). Note that (7.1) is also a shifted Hermitian

matrix if D is a multiple of the identity matrix.

For Examples 7.1 and 7.5, the mesh size h = 1/64 was chosen, resulting in a 3969x3969

matrix A. In Examples 7.2--4, h = 1/32 and thus A is a 961 x 96I matrix. Example 7.6

was run on a 128 x 128 grid leading to a 16384 x 16384 matrix A. The right-hand side b

was chosen to be a vector with random components in [-1, 1] + i[-1, 1], with the exception

of Example 7.2, where b had constant components 1 + i, and of Example 7.5, where the

exact solution z, was generated with random components in [-1,1] + i[-1, 1] and then the

right-hand side was set to b := Ax,. As starting vector always z0 = 0 was chosen.
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As stopping criterion, we used

tlb-.4x. II
R. :- < 10 -6.

tib-Axoll -
(7.3)

In Figures 7.1-4, the relative residual norm (7.3), R,, is plotted versus the number N,_ of

matrix-vector products with A, A., or .4... Note that N, = n is identical to the iteration

number, except for CGS respectively CGNR which both require two matrix-vector products

.4. v respectively A.v, A. v per iteration and for which Nn = 2n. For GMRES [SS2], work

and storage per iteration step n grows linearly with n and in practice it is necessary to use

restarts. In the sequel, GMRES(n0) and GMRES,(n0) refer to complex and real versions

restarted alter every no iterations --of the GMRES method applied to (1.1) and (6.2),

respectively.

7.2. Complex symmetric linear systems

In a first series of experiments, QMR (with different weighting strategies) and BCG were

compared. The natural choice (3.7) turned out to be the best strategy in all cases. In the

following, QMR always refers to Algorithm 3.1 with weights (3.7). Then QMR produces

residual vectors whose norms are almost monotonically decreasing and generally smaller

than those of the BCG residuals. However, convergence of QMR and BCG typically

occurred after a comparable number of iterations. The following example is typical.

Example 7.1. Here, (7.1) is a 3969 x 3969 matrix with al = 200, and the diagonal

elements of D are given by (7.2) with o = 10. In Figure 7.1, the convergence behavior

of BCG, QMR, and an unweighted version of the QMR approach (based on the Lanczos

vectors vn, as generated by the complex symmetric Lanczos Algorithm 4.1) is displayed.
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Figure 7.1. Convergence behavior of BCG, QMR, and an unweighted version of

the QMR approach for Example 7.1.

Next, we compared the CGS Algorithm 4.8 and complex GMRES with QMR and

BCG. Typically, CGS needed slightly fewer iterations than QMR and BCG to reach (7.3).

However, per iteration, QMR and BCG require only about half as much work and storage

and thus CGS is more expensive than QMR or BCG for complex symmetric matrices. Due

to the necessary restarts, GMRES was never competitive with QMR, BCG, or CGS.

Example 7.2. In (7.1), we set N = 961, al = 100 and dj, j = 1,...,n, are chosen as

random numbers in [0, 10]. Figure 7.2 shows the convergence behavior of GMRES(20),

QMR, BCG, and two runs of CGS with different starting vectors So, namely so = r0

respectively so with random components in [-1, 1] + i[-1, 1]. Notice the extremely large

residual norms in the early stage of the CGS iteration.
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Figure 7.2. Convergence behavior of GMRES(20), QMR, BCG, and two runs

of CGS with different starting vectors so for Example 7.2.

In the following two examples, we compared CG-type methods for .4z = b with real

schemes for the equivalent real systems (6.2) respectively (6.3).

MR(A.,) denotes the MR method (6.21) applied to the real symmetric system (6.3).

Example 7.3. Here, in (7.1), N = 961, o'1 = 100, and dj are given by (7.2) with a = 100.

In Figure 7.3, the convergence behavior of QMR, MR(A,,), GMRES(20), GMRES(5),

GMRES,(5), and CGNR is shown. Notice that, although the symmetry condition (6.25)

is not fulfilled, the curves for CGNR and MR(A,,,) are almost identical. This confirms

(6.31). Finally, we tried GMRES(k0) and GMRES,(k0) also with other restart parameters

k0. For this example, both methods did never converge.
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Figure 7.3. Convergence behavior of QMR, MR(A..), GMRES(20), GMRES(5),

GMRES.(5), and CGNR for Example 7.3.

7.3. Shifted Hermitlan linear systems

Now we choose D = a2I in (7.1). Then, (7.1) is a shifted Hermitian matrix of the form

.4=T+iaI, T=.40-o'lh2I, o':=a2h 2. (7.4)

Note that A is a shifted Hermitian matrix of the form (6.1I) (cf. Example 6.1). In partic-

ular, .4 belongs to the class of matrices (5.1) and we can apply the algorithms developed

in Chapter 5 to Ax = b.

Example 7.4. Let A be the 961 x 961 matrix (7.4) with al = 1000 and o.2 = 100.

Here, we denote by MR(A) the run with MR Algorithm 5.3 applied to the original system

Ax = b. Recall that, by rewriting -iAx = -ib as a real system (6.2), one obtains a

shifted skewsymmetric matrix (6.13), (-iA),. Again, for such matrices an efficient true

minimal residual algorithm, denoted by MR((-iA).), e:,dsts [EES, Frel]. Figure 7.4 shows

the convergence behavior of MR(A), MR(A**), MR((-iA),),CGNR, and GMRES(20).

Notice that MR((-iA),) and CGNR are nearly identical. This is typical for the case that

a is small compared to the spectral radius of T. Furthermore, if o" = 0, i.e. (-iA), in

(6.13) is skewsymmetric, CGNR and MR((-iA),) are even equivalent [Frel].
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Figure 7.4. Convergence behavior of MR(A), MR(A..), MR((-iA),),CGNR,

and GMRES(20) for Example 7.4.

In the next example, we tested the various polynomial preconditioners discussed in

Section 5.5. Note that the eigenvalues of A0 are known, and for our experiments with

polynomial preconditioning we have used the true values

= )_min(A0) - or1h2 , fl -- Arnax(A0) - °"1h2 (7.5)

of the extreme eigenvalues of T (cf. (5.58)).

Examples 7.5. The matrix A is 3969 x 3969. For the constants in (7.4), values of the form

al = a1(¢), a2 = a2(¢) were chosen. Here 0 < ¢ < 7r/2 is a parameter such that the points

a(¢) = (/3 +a + 2ia)/(/3-- a) all lie on the same ellipse/3R, R > 1 fixed, with 4' describing

the position of a(_b) on 13R (see (5.31) and (5.33)). The case ¢ = 0 corresponds to a

symmetric positive definite matrix (7.4), and for our experiments, we have chosen R > 1

such that A = ,4o for ¢ = 0. Moreover, notice that with increasing ¢, the symmetric part

T of (7.4) becomes more and more indefinite and a = -/3 for ¢ = r:/2. Also, the shift a

increases with ¢. Finally, we remark that the error bounds of Theorem 5.11 suggest that

the MR and ME methods should display similar convergence rates for all ¢. In Tables

7.1-4, for several values of ¢ (stated in degree!) and the various CG-type methods, we

list the number of iterations which were necessary to reach (7.3). A "*" indicates that the

process still had not converged after 200 steps. In Table 7.1 the results for the MR, ME,
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and GAL Algorithms 5.3 respectively5.4 (without preconditioning) are given. The Tables

7.2, 7.3, and 7.4 display the behavior of the three methods combined with the polynomial

preconditioner (5.66) with l = 6, 11. and 16, respectively. Also listed are the results for

the ZPCG method consisting of the classical CG algorithm with Zolotarev polynomial

preconditioner (5.62) (see Theorem 5.12).

¢/Degree 0 5 10 15 20 25 30 35 40 45
MR 120 126 148 165 175 183 190 197 203 208

ME 183 177 166 186 191 210 210 215 224 231

GAL 129 144 165 182 198 208 213 222 225 231

_/Degree 50 55 60 65 70 75 80 85 90
MR 212 217 221 225 228 232 234 237 239

ME 236 237 244 245 250 252 259 260 263

GAL 236 240 244 248 253 255 259 261 264

Table 7.1. Number of iterations after which the various algorithms had reduced

the norm of the starting residual by 10 -6 . Listed are the numbers for the basic

methods without preconditioning. The family (depending on the parameter ¢)

of test problems is the one described in Example 7.5.

ga/ Degree

PPMR

PPME

PPGAL

ZPCG

0 5 10 15 20 25 30 35 40 45

47 47 47 47 47 47 48 47 47 47

63 47 47 47 47 47 64 47 47 47

49 49 49 49 50 50 50 50 50 49

* * 148 99 74 59 49 56 62 63

¢/Degree 50 55 60 65 70 75 80 85 90

PPMR

PPME

PPGAL

ZPCG

47 47 47 47 47 47 47 47 47

47 47 63 47 47 47 47 47 63

49 49 49 49 49 49 50 50 50

59 53 48 53 57 58 56 52 49

Table 7.2. Same as Table 7.1, but with polynomial preconditioning of degree

I=6.
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_,/Degree 0 5 10 15 '2_0 25 30 :35 40 4.5

PPMR

PPME

PPGAL

ZPCG

26 26 26 26 26 26 26 26 26 26

33 26 27 29 26 26 28 27 26 27

28 28 28 28 28 28 28 28 28 28

* 87 44 29 32 34 29 29 31 29

_/Degree 50 55 60 65 70 75 80 85 90

PPMR

PPME

PPGAL

ZPCG

26 26 26 26 26 26 26 26 26

30 27 26 30 27 26 26 28 27

28 28 28 28 28 28 28 28 28

27 30 29 27 29 29 27 2S 29

Table 7.3. Same as Table 7.1, but with polynomial preconditioning of degree

/=11.

¢/Degree 0 5 10 15 20 25 30 35 40 45

PPMR

PPME

PPGAL

ZPCG

18 18 18 18 18 18 18 18 18 18

23 19 18 18 17 17 18 18 17 23

20 20 19 19 20 20 19 19 19 20

146 41 21 23 21 20 21 19 20 19

¢/Degree 50 55 60 65 70 75 80 85 90
PPMR

PPME

PPGAL

ZPCG

18 18 18 18 18 18 18 18 18

17 18 18 17 17 17 17 17 23

19 19 19 19 19 19 19 19 20

20 19 20 19 19 20 19 20 19

Table 7.4. Same as Table 7.1, but with polynomial preconditioning of degree

l= 16.

From these results, we draw the following conclusions. If used without preconditioning,

the MR method appears to be superior to the ME and GAL approaches. However, note

that the stopping criterion (7.3) is based on the norm of the residual, and this is more

favorable for the MR method. A comparison based on the Euclidean norm of the error

vector x, - Xr, displays a similar convergence behavior for the ME and MR approaches.

In combination with polynomial preconditioning, the performance of all three methods

PPMR, PPME, and PPGAL is nearly identical. Also, note that the polynomial (5.66)

yields a very efficient preconditioner which reduces the number of iterations significantly

in all examples. Finally, as already suspected in the previous section, the strategy leading

to the ZPCG method is a very dangerous one, and the algorithm even fails to converge if

A is close to a positive definite matrix.
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Examples 7.6. Here A is a 163S4 x 16384 matrix of the form (7.4) with al = o"2 = I00.

We applied the PPMR method based on the MR Algorithm 5.3 combined with polynomial

preconditioning (5.66) of various degrees I. This example was run on a massively parallel

computer, the CM-2, with 16,384 processors. In Figure 7.5, we plot the number of iter-

ations after which the PPMR method had reached (7.3) versus I. In Figure 7.6. we '_lot

the actual computing time (in seconds) versus I. Clearly, polynomial preconditioning :s an

emcient technique on the CM-2.

180 i ! ! ! i

160

140

120

100

80

60'

4O
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l
O l I I & .... ! |

0 5 I0 15 20 25 30 35

Figure 7.5. Number of iterations for PPMR versus the degree l of the precon-

ditioner for Example 7.6.
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Figure 7.6. Actual computing time (in seconds) for PPMR on the CM-2 versus

the degree l of the preconditioner for Example 7.6.

We conclude this section with two further remarks, all the results for the PPMR,

PPME, and PPGAL methods were obtained with right polynomial preconditioning (RPP)

(cf. (5.57)). Experiments with left polynomial preconditioning (LPP) (see (5.56)) gave

nearly identical results. However, since implementations of RPP are slightly more eco-

nomical, we therefore recommend RPP over LPP. Finally, recall that for our tests_ the

true extreme eigenvalues (7.5) of T were used. Of course, in general, such information is

not available. However, it is possible to obtain good estimates of these quantities after

relatively few steps of the Hermitian Lanczos Algorithm 5.1.
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8. Concluding remarks

Complex non-Hermitian linear systems arise in important applications, such as the numer-

ical solution of the complex Helmholtz equation. Often their coefficient matrices exhibit

special structures, such as complex symmetry, or they are shifted Hermitian matrices. Here,

we have considered Krylov subspace methods for the solution of complex non-Hermitian

linear systems.

First, we have presented a novel Krylov subspace iteration, the QMR method, for

general nonsingular non-Hermitian linear systems. The method uses a recently proposed

[FGN, FN1] robust implementation of the look-ahead Lanczos algorithm to generate basis

vectors for the Krylov subspaces K,(ro,A). The QMR iterates are characterized by a

quasi-minimal residual property over K,_(r0, A). Both the look-ahead Lanezos algorithm

and the computation of the actual QMR iterates can be implemented using only short

recurrences. The QMR approach is closely related to the BCG algorithm; however, unlike

BCG, the QMR algorithm has smooth convergence curves and good numerical properties.

Furthermore, we have derived bounds for the QMR residuals which are essentially the

same as the standard bounds for GMRES. To the best of our knowledge, this is the first

convergence result for a BCG-like algorithm for general non-Hermitian matrices.

Second, we discussed various CG-type methods designed for two special classes of

complex non-Hermitian matrices. In particular, we have shown that work and storage

for the QMR and BCG methods is roughly halved for complex symmetric linear systems.

For shifted Hermitian matrices, we have investigated three different CG-type approaches

with iterates defined by a minimal residual property, a Galerkin type condition, and an

Euclidean error minimization. Numerically stable implementations were proposed and

error bounds were derived for all three methods. Moreover, it was shown how the special

shift structure can be preserved by using polynomial preconditioning, and results on the

optimal choice of the polynomial preconditioner were given.

It is very tempting (and often done in practice!) to avoid complex linear system by

solving equivalent real systems instead. We have presented some theoretical and numerical

results which show that this -- at least for Krylov subspace methods -- is a fatal approach.

Typically, the resulting real systems are unequally harder to solve by conjugate gradient

type algorithms than the original complex ones.

An important question, that we have not addressed here, is how to construct efficient

preconditioners for complex symmetric linear systems, such as the ones arising from the

complex Helmholtz equation. This will be the subject of a forthcoming report.
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